Home
Class 12
MATHS
The value of lim(n->oo)[n/(n^2+1^2)+n/(n...

The value of `lim_(n->oo)[n/(n^2+1^2)+n/(n^2+2^2)++1/(2n)]` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr oo)[(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))++(1)/(2n)] is

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

The value of lim_( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) + ...+ (n)/( (2n-1)^2) ) is

The value of lim_ (n rarr oo) [(1+ (1) / (n ^ (2))) (1+ (2 ^ (2)) / (n ^ (2))) ... (1+ (n ^ (2)) / (n ^ (2)))] ^ ((1) / (n))

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_ (n rarr oo) [(1) / (n) + (e ^ ((1) / (n))) / (n) + (e ^ ((2) / (n))) / (n) + .... + (e ^ ((n-1) / (n))) / (n)] is:

lim_(n to oo) [ 1/(n^2) + 2/(n^2) + … + n/(n^2)]

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is