Home
Class 12
MATHS
If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x...

If `(loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y)` show that `(b/c )^(x)(c /a)^(y)(a/b)^z=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y), thena ^(x)b^(y)c^(z) is

(log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) then value of abc=

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y), then prove that: x^(x)y^(y)z^(z)=1

If (log a)/(y-z)=(log b)/(z-x)=(log c)/(x-y) the value of a^(y+z)*b^(z+x)*c^(x+y) is

If (log x)/(y-z)=(log y)/(z-x)=(log z)/(x-y) then prove that x^(y)+z^(z)+xx^(y+z)+y^(x+x)+z^(x+y)>=3

3) If (a)/(x+y)=(b)/(y+z)=(c)/(z-x) ,then show that b=a+c.

If (log_(e)a)/(y-z)=(log_(e)b)/(z-x)=(log_(e)c)/(x-y), then a^(y^(2)+yz)=*b^(z^(2)+zx+x^(2))*c^(x^(2)+xy+y^(2)) equals

If (x)/(b+c-a)=(y)/(c+a-b)=(z)/(a+b-c) show that (b-c)x+(c-a)y+(a-b)z=0

If a(y+z)=b(z+x)=c(x+y) then show that (a-b)/(x^(2)-y^(2))=(b-c)/(y^(2)-z^(2))=(c-a)/(z^(2)-x^(2))]