Home
Class 12
MATHS
Show that int(0)^((pi)/(2))logsinxdx=(pi...

Show that `int_(0)^((pi)/(2))logsinxdx=(pi)/(2)log((1)/(2))=(-pi)/(2)log2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^((pi)/(2))log(sin2x)dx

Show that int_(0)^((pi)/(2))log(sin2x)dx=-(pi)/(2)(log2)

int_(0)^((pi)/(2))log(cos x)dx=

Evaluate int_(0)^((pi)/(2))log sin xdx

int_(0)^((pi)/(2))cos2x log sin xdx

int_(0)^(pi//2)x cot x dx=(pi)/(2)(log2)

If int_(0)^((pi)/(2))logcosxdx=(pi)/(2)log((1)/(2)) , then int_(0)^((pi)/(2))logsecdx=

int_(0)^((pi)/(4))log sin2xdx equals to

int_(0)^((pi)/(2))log sin xdx=int_(0)^((pi)/(2))log cos xdx=(1)/(2)(pi)log((1)/(2))

int_(0)^( pi)cos2x*log(sin x)dx