Home
Class 11
MATHS
Question "1" Lim x rarr a(f(x)-f(a))/(x-...

`Question "1" Lim x rarr a(f(x)-f(a))/(x-a) gives "`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)(f(x)-f(2))/(x-2)=

f(a)=2,f'(a)=1,g(a)=-1,g'(a)=-2 then lim_(x rarr oo)(g(x)f(a)-g(a)f(x))/(x-a), is

If f(x) is differentiable and strictly increasing function,then the value of lim_(x rarr0)(f(x^(2))-f(x))/(f(x)-f(0)) is 1 (b) 0(c)-1 (d) 2

lim_(x rarr oo) (1+f(x))^(1/f(x))

Evaluate: lim_(x rarr 1) (f(x)-f(1))/(x-1), "where" f(x) = x^(2)-2x .

If f(x)=-sqrt(25-x^(2)) then find lim_(x rarr1)(f(x)-f(1))/(x-1)

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1 then lim_(x rarr oo)(f(2x))/(f(x))=

If (lim)_(x rarr c)(f(x)-f(c))/(x-c) exists finitely,write the value of (lim)_(x rarr c)f(x)

Evaluate lim_(x rarr1)(f(x)-f(1))/(x-1), where f(x)=x^(2)-2x

Let f:R rarr R be a positive increasing function with lim_(x rarr oo)(f(3x))/(f(x))=1. Then lim_(x rarr oo)(f(2x))/(f(x))=(1)(2)/(3)(2)(3)/(2)(3)3(4)1