Home
Class 12
MATHS
int(0)^(oo)(tan^(-1)x)/(1+x^(2))dx...

`int_(0)^(oo)(tan^(-1)x)/(1+x^(2))dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(1)(tan^(-1)x)/(1+x^(2))dx

int_(0)^(oo)((tan^(-1)x)/(x(1+x^(2))))dx

If quad f(theta)=int_(0)^(oo)(tan^(-1)x)/(x^(2)+2x cos theta+1)dx,theta in(0,pi) then f((pi)/(2))=(pi^(2))/(a) where,a is

int_(0)^(1)(tan^(-1)x)/(x)dx=

int_(0)^(1)(tan^(-1)x)/(x)dx=

STATEMENT-1 : int_(0)^(oo)(dx)/(1+e^(x))=ln2-1 STATEMENT-2 : int_(0)^(oo)(sin(tan^(-1)))/(1+x^(2))dx=pi STATEMENT-3 : int_(0)^(pi^(2)//4)(sinsqrt(x))/(sqrt(x))dx=1

Evaluate: int_(0)^(1)x(tan^(-1)x)^(2)dx

Evaluate : int_(0)^(oo)(cot^(-1)x)^(2)dx

Evaluate: int_(0)^(1)(x tan^(-1)x)/((1+x^(2))^(3/2))dx

2int_(0)^(1)(tan^(-1)x)/(x)dx=