Home
Class 11
MATHS
Prove that cos^(4)A-sin^(4)A=cos^(2)A-si...

Prove that `cos^(4)A-sin^(4)A=cos^(2)A-sin^(2)A`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \cos^4 A - \sin^4 A = \cos^2 A - \sin^2 A \), we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step-by-Step Solution: 1. **Start with the LHS:** \[ \text{LHS} = \cos^4 A - \sin^4 A \] 2. **Recognize the difference of squares:** The expression \( \cos^4 A - \sin^4 A \) can be factored using the difference of squares formula \( a^2 - b^2 = (a-b)(a+b) \). Here, let \( a = \cos^2 A \) and \( b = \sin^2 A \): \[ \cos^4 A - \sin^4 A = (\cos^2 A - \sin^2 A)(\cos^2 A + \sin^2 A) \] 3. **Use the Pythagorean identity:** We know from trigonometric identities that: \[ \cos^2 A + \sin^2 A = 1 \] Substituting this into our expression gives: \[ \text{LHS} = (\cos^2 A - \sin^2 A)(1) \] 4. **Simplify the expression:** Thus, we have: \[ \text{LHS} = \cos^2 A - \sin^2 A \] 5. **Conclude the proof:** Since we have shown that the left-hand side equals the right-hand side, we conclude: \[ \cos^4 A - \sin^4 A = \cos^2 A - \sin^2 A \] ### Final Result: \[ \text{LHS} = \text{RHS} \] Therefore, the equation \( \cos^4 A - \sin^4 A = \cos^2 A - \sin^2 A \) is proven.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that : cos^(4) A - sin^(4) A = 2 cos^(2) A - 1

i) Prove that: cos^(3)2A+3cos2A = 4(cos^(6)A-sin^(6)A) ii) Prove that: 4(cos^(3)10^(@) + sin^(3)20^(@)) = 3(cos10^(@)+sin20^(@))

Prove that sin^(4)A"cosec"^(2)A+cos^(4)Asec^(2)A=1

Prove that : (cos^(3) A + sin^(3) A)/ (cos A + sin A) + (cos^(3) A - sin^(3) A)/(cos A - sin A) = 2

Prove that: (sin3A cos4A-sin Acos2A)/(sin4A sin A+cos6A cos A)=tan2A

Prove that : 2 sin^(2) A + cos^(4) A = 1 + sin^(4) A

If (cos^4A)/(cos^2B)+(sin^4A)/(sin^2B)=1 , then prove that (i) sin^4A+sin^4B=2 sin^2Asin^2B (ii) (cos^4B)/(cos^2A)+(sin^4B)/(sin^2A)=1

If (cos^4 A)/(cos^2 B) + (sin^4 A)/(sin^2 B) =1 , Prove that: sin^4 A+sin^4 B=2 sin^2 A sin^2 B

Prove that sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta .

Prove that: (sin3Acos4A-sinAcos2A)/(sin4AsinA+cos6AcosA)=tan2A