Home
Class 11
MATHS
Prove that (1+tanA)^(2)+(1-tanA)^(2)=2se...

Prove that `(1+tanA)^(2)+(1-tanA)^(2)=2sec^(2)A`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \((1 + \tan A)^2 + (1 - \tan A)^2 = 2 \sec^2 A\), we will start by expanding the left-hand side (LHS) and simplifying it step by step. ### Step 1: Expand the LHS We start with the expression: \[ (1 + \tan A)^2 + (1 - \tan A)^2 \] Using the formula \((a + b)^2 = a^2 + 2ab + b^2\), we can expand both squares: \[ (1 + \tan A)^2 = 1^2 + 2 \cdot 1 \cdot \tan A + \tan^2 A = 1 + 2\tan A + \tan^2 A \] \[ (1 - \tan A)^2 = 1^2 - 2 \cdot 1 \cdot \tan A + \tan^2 A = 1 - 2\tan A + \tan^2 A \] Now, adding these two expansions together: \[ (1 + \tan A)^2 + (1 - \tan A)^2 = (1 + 2\tan A + \tan^2 A) + (1 - 2\tan A + \tan^2 A) \] ### Step 2: Combine Like Terms Combining the terms from the expansion: \[ = 1 + 2\tan A + \tan^2 A + 1 - 2\tan A + \tan^2 A \] Notice that \(2\tan A\) and \(-2\tan A\) cancel each other out: \[ = 1 + 1 + \tan^2 A + \tan^2 A = 2 + 2\tan^2 A \] ### Step 3: Factor Out the Common Term Now we can factor out the common term \(2\): \[ = 2(1 + \tan^2 A) \] ### Step 4: Use the Trigonometric Identity We know from the Pythagorean identity that: \[ 1 + \tan^2 A = \sec^2 A \] Substituting this identity into our expression gives: \[ = 2 \sec^2 A \] ### Conclusion Thus, we have shown that: \[ (1 + \tan A)^2 + (1 - \tan A)^2 = 2 \sec^2 A \] This completes the proof.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that : (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

Prove that: (1-tanA)^(2)+(1-cotA)^(2)=(secA-"cosec"A)^(2)

prove that ((1-tanA)/(1-cotA))^2=tan^2A

Prove that: tanA(1+sec2A)=tan2A

Prove that (tanA+cotA)^(2)="cosec"^(2)A+sec^(2)A .

Prove that: (sin2A)/(1+cos2A)=tanA

Prove that (tanA)/(1+secA) - (tanA)/(1-secA) = 2cosecA

Prove that : (secA+1)/(tanA)=(tanA)/(secA-1)

Prove that : (1+cotA)/(cosA)+(1+tanA)/(sinA)=2(secA+"cosec"A)

Prove that : (tanA)/(1-cotA)+(cotA)/(1-tanA)=1+secA".cosec"A