Home
Class 11
MATHS
Prove that cot^(4)theta+cot^(2)theta="co...

Prove that `cot^(4)theta+cot^(2)theta="cosec"^(4)theta-"cosec"^(2)theta`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \cot^4 \theta + \cot^2 \theta = \csc^4 \theta - \csc^2 \theta \), we will start with the right-hand side and manipulate it to show that it equals the left-hand side. ### Step 1: Start with the Right-Hand Side We begin with the expression on the right-hand side: \[ \csc^4 \theta - \csc^2 \theta \] ### Step 2: Factor Out \(\csc^2 \theta\) We can factor out \(\csc^2 \theta\) from the right-hand side: \[ \csc^4 \theta - \csc^2 \theta = \csc^2 \theta (\csc^2 \theta - 1) \] ### Step 3: Use the Pythagorean Identity Recall the Pythagorean identity: \[ \csc^2 \theta - 1 = \cot^2 \theta \] Substituting this identity into our expression gives: \[ \csc^2 \theta (\csc^2 \theta - 1) = \csc^2 \theta \cdot \cot^2 \theta \] ### Step 4: Substitute for \(\csc^2 \theta\) We know that: \[ \csc^2 \theta = 1 + \cot^2 \theta \] Substituting this into our expression: \[ \csc^2 \theta \cdot \cot^2 \theta = (1 + \cot^2 \theta) \cdot \cot^2 \theta \] ### Step 5: Expand the Expression Now, we expand the expression: \[ (1 + \cot^2 \theta) \cdot \cot^2 \theta = \cot^2 \theta + \cot^4 \theta \] ### Step 6: Rearrange the Terms Rearranging gives us: \[ \cot^4 \theta + \cot^2 \theta \] ### Conclusion Thus, we have shown that: \[ \csc^4 \theta - \csc^2 \theta = \cot^4 \theta + \cot^2 \theta \] This proves that: \[ \cot^4 \theta + \cot^2 \theta = \csc^4 \theta - \csc^2 \theta \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that : sec^(2)theta+"cosec"^(2)theta=sec^(2)theta*"cosec" ^(2)theta

Prove that tan^(2)theta+cot^(2)theta+2=sec^(2)theta cosec^(2)theta

Prove that 1+cot^(2) theta = cosec^(2) theta

Prove that cos^(2)theta("cosec"^(2)theta-cot^(2)theta)=cos^(2)theta .

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

If tan theta =(1)/(sqrt(7)) , find the value of ("cosec"^(2)theta-sec^(2)theta)/("cosec"^(2)theta+sec^(2)theta) .

Prove that cos^2 theta cosec theta+sin theta=cosec theta

Prove that secthetacottheta="cosec"theta

Statement 1: tan^(2)(sec^(-1)2)+cot^(2)(cosec^(-1)3)=11 . Statement -2 :tan^(2)theta+sec^(2)theta=1=cot^(2)theta+cosec^(2)theta