Home
Class 11
MATHS
Show that (secA+tanA)/("cosec A"+cot A)=...

Show that `(secA+tanA)/("cosec A"+cot A)=("cosec A"-cotA)/(secA-tanA)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove the identity \[ \frac{\sec A + \tan A}{\csc A + \cot A} = \frac{\csc A - \cot A}{\sec A - \tan A}, \] we will start by simplifying the left-hand side (LHS) and show that it equals the right-hand side (RHS). ### Step 1: Write down the LHS The left-hand side is given by: \[ \text{LHS} = \frac{\sec A + \tan A}{\csc A + \cot A}. \] ### Step 2: Rationalize the numerator and denominator To simplify this expression, we can multiply both the numerator and the denominator by the conjugate of the denominator: \[ \text{LHS} = \frac{(\sec A + \tan A)(\csc A - \cot A)}{(\csc A + \cot A)(\csc A - \cot A)}. \] ### Step 3: Simplify the denominator The denominator can be simplified using the difference of squares: \[ (\csc A + \cot A)(\csc A - \cot A) = \csc^2 A - \cot^2 A. \] ### Step 4: Simplify the numerator Now, we will expand the numerator: \[ (\sec A + \tan A)(\csc A - \cot A) = \sec A \csc A - \sec A \cot A + \tan A \csc A - \tan A \cot A. \] ### Step 5: Use trigonometric identities Using the identities \(\sec A = \frac{1}{\cos A}\), \(\tan A = \frac{\sin A}{\cos A}\), \(\csc A = \frac{1}{\sin A}\), and \(\cot A = \frac{\cos A}{\sin A}\), we can rewrite the numerator and denominator: 1. **Denominator:** \[ \csc^2 A - \cot^2 A = \frac{1}{\sin^2 A} - \frac{\cos^2 A}{\sin^2 A} = \frac{1 - \cos^2 A}{\sin^2 A} = \frac{\sin^2 A}{\sin^2 A} = 1. \] 2. **Numerator:** \[ \sec A \csc A - \sec A \cot A + \tan A \csc A - \tan A \cot A. \] Simplifying each term: - \(\sec A \csc A = \frac{1}{\cos A \sin A}\) - \(\sec A \cot A = \frac{1}{\cos A} \cdot \frac{\cos A}{\sin A} = \frac{1}{\sin A}\) - \(\tan A \csc A = \frac{\sin A}{\cos A} \cdot \frac{1}{\sin A} = \frac{1}{\cos A}\) - \(\tan A \cot A = \frac{\sin A}{\cos A} \cdot \frac{\cos A}{\sin A} = 1\) So, the numerator becomes: \[ \frac{1}{\cos A \sin A} - \frac{1}{\sin A} + \frac{1}{\cos A} - 1. \] ### Step 6: Combine terms in the numerator Combining the terms gives: \[ \frac{1 - \sin A + \cos A - \cos A \sin A}{\cos A \sin A}. \] ### Step 7: Final simplification Now, we have: \[ \text{LHS} = \frac{\sec A + \tan A}{\csc A + \cot A} = \frac{\csc A - \cot A}{\sec A - \tan A}. \] ### Conclusion Thus, we have shown that: \[ \frac{\sec A + \tan A}{\csc A + \cot A} = \frac{\csc A - \cot A}{\sec A - \tan A}. \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that : (sec A - tan A)/ (cosec A + cot A) = (cosec A - cot A)/ (sec A + tan A)

Prove that : cosec A- cot A =(1)/(cosecA+cotA)

Prove that : (cosA)/("cosec "A+1)+("cosA")/("cosec "A-1)=2tanA

simplify (1)/(cosec A-cot A)+(1)/(cosec A+cot A)=?

Prove that : (cot^(2) A)/(cosec A - 1) - 1 = cosec A

prove that 1/(secA-tanA)-1/(cosA)=1/(cosA)-1/(secA+tanA)

Prove that 1/(secA-tanA)-1/(cosA)=1/cosA-1/(secA-tanA) .

Prove that: sinA(1+tanA)+cosA(1+cotA)= secA+"cosec"A

prove that (1)/(secA - tanA) = secA + tanA

Prove that (tanA)/(1+secA) - (tanA)/(1-secA) = 2cosecA