Home
Class 11
MATHS
If cos alpha=(5)/(13) and alpha lies in ...

If `cos alpha=(5)/(13)` and `alpha` lies in the fourth quadrant, find the value of `(2-3cot alpha)/(4-9sqrt(sec^(2)alpha-1))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given information: **Given:** - \( \cos \alpha = \frac{5}{13} \) - \( \alpha \) is in the fourth quadrant. ### Step 1: Find \( \sin \alpha \) Using the Pythagorean identity: \[ \sin^2 \alpha + \cos^2 \alpha = 1 \] Substituting the value of \( \cos \alpha \): \[ \sin^2 \alpha + \left(\frac{5}{13}\right)^2 = 1 \] \[ \sin^2 \alpha + \frac{25}{169} = 1 \] \[ \sin^2 \alpha = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169} \] Taking the square root: \[ \sin \alpha = -\sqrt{\frac{144}{169}} = -\frac{12}{13} \] (Note: \( \sin \alpha \) is negative in the fourth quadrant.) ### Step 2: Find \( \cot \alpha \) Using the definition of cotangent: \[ \cot \alpha = \frac{\cos \alpha}{\sin \alpha} = \frac{\frac{5}{13}}{-\frac{12}{13}} = -\frac{5}{12} \] ### Step 3: Find \( \sec^2 \alpha \) Using the identity: \[ \sec^2 \alpha = 1 + \tan^2 \alpha \] First, find \( \tan \alpha \): \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{-\frac{12}{13}}{\frac{5}{13}} = -\frac{12}{5} \] Now, calculate \( \tan^2 \alpha \): \[ \tan^2 \alpha = \left(-\frac{12}{5}\right)^2 = \frac{144}{25} \] Thus, \[ \sec^2 \alpha = 1 + \frac{144}{25} = \frac{25}{25} + \frac{144}{25} = \frac{169}{25} \] ### Step 4: Calculate \( \sec^2 \alpha - 1 \) \[ \sec^2 \alpha - 1 = \frac{169}{25} - 1 = \frac{169}{25} - \frac{25}{25} = \frac{144}{25} \] ### Step 5: Calculate \( \sqrt{\sec^2 \alpha - 1} \) \[ \sqrt{\sec^2 \alpha - 1} = \sqrt{\frac{144}{25}} = \frac{12}{5} \] ### Step 6: Substitute into the expression Now substitute \( \cot \alpha \) and \( \sqrt{\sec^2 \alpha - 1} \) into the expression: \[ \frac{2 - 3 \cot \alpha}{4 - 9 \sqrt{\sec^2 \alpha - 1}} = \frac{2 - 3 \left(-\frac{5}{12}\right)}{4 - 9 \left(\frac{12}{5}\right)} \] ### Step 7: Simplify the numerator \[ 2 - 3 \left(-\frac{5}{12}\right) = 2 + \frac{15}{12} = 2 + \frac{5}{4} = \frac{8}{4} + \frac{5}{4} = \frac{13}{4} \] ### Step 8: Simplify the denominator \[ 4 - 9 \left(\frac{12}{5}\right) = 4 - \frac{108}{5} = \frac{20}{5} - \frac{108}{5} = -\frac{88}{5} \] ### Step 9: Final expression Now we can combine the results: \[ \frac{\frac{13}{4}}{-\frac{88}{5}} = \frac{13 \times 5}{4 \times -88} = \frac{65}{-352} = -\frac{65}{352} \] Thus, the final answer is: \[ \boxed{-\frac{65}{352}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If sinalpha=-(3)/(5) and alpha lies in the third quadrant then find the value of cos.(alpha)/(2)

If sec alpha=13/5, (0 lt alpha lt pi/2) , then the value of (2-3cotalpha)/(4-9sqrt(sec^(2)alpha-1)) is

find the value of (cos^3alpha+sin^3alpha)/(1-sin(alpha).cos(alpha))

If alpha in (-(pi)/(2), 0) , then find the value of tan^(-1) (cot alpha) - cot^(-1) (tan alpha)

If cos(alpha+beta)=4/5; sin(alpha-beta)=5/13 and alpha,beta lie between 0&pi/4 then find the value of tan2alpha

If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 alpha+8sec^6 alpha.

If cos 5 alpha=cos^5 alpha, where alpha in (0,pi/2) then find the possible values of (sec^2 alpha+cosec^2 alpha+cot^2 alpha).

If sin alpha.sinbeta - cos alpha.cos beta+1=0 , then find the value of cot alpha.tan beta .

If A=[{:(cos alpha,sin alpha),(-sin alpha, cos alpha):}] and A^(-1)=A ' then find the value of alpha .

If (2 sin alpha)/(1 + cos alpha + sin alpha) = 3/4 , then the value of (1 - cos alpha + sinalpha)/(1 + sin alpha) is equal to