Home
Class 11
MATHS
Verify : sin^(2)theta+cos^(2)theta=1" ...

Verify :
`sin^(2)theta+cos^(2)theta=1" if "theta=30^(@),`

Text Solution

AI Generated Solution

The correct Answer is:
To verify the identity \( \sin^2 \theta + \cos^2 \theta = 1 \) for \( \theta = 30^\circ \), we will follow these steps: ### Step 1: Identify the values of sine and cosine for \( 30^\circ \) We know from trigonometric values that: - \( \sin 30^\circ = \frac{1}{2} \) - \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) ### Step 2: Calculate \( \sin^2 30^\circ \) Now, we will calculate \( \sin^2 30^\circ \): \[ \sin^2 30^\circ = \left( \frac{1}{2} \right)^2 = \frac{1}{4} \] ### Step 3: Calculate \( \cos^2 30^\circ \) Next, we will calculate \( \cos^2 30^\circ \): \[ \cos^2 30^\circ = \left( \frac{\sqrt{3}}{2} \right)^2 = \frac{3}{4} \] ### Step 4: Add \( \sin^2 30^\circ \) and \( \cos^2 30^\circ \) Now, we will add the two results: \[ \sin^2 30^\circ + \cos^2 30^\circ = \frac{1}{4} + \frac{3}{4} \] ### Step 5: Simplify the addition Combining the fractions: \[ \frac{1}{4} + \frac{3}{4} = \frac{1 + 3}{4} = \frac{4}{4} = 1 \] ### Conclusion Since we have shown that: \[ \sin^2 30^\circ + \cos^2 30^\circ = 1 \] This verifies the identity \( \sin^2 \theta + \cos^2 \theta = 1 \) for \( \theta = 30^\circ \). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

The roots of the equation |(3x^(2),x^(2) + x cos theta + cos^(2) theta ,x^(2) + x sin theta + sin^(2) theta),(x^(2) + x cos theta + cos^(2) theta,3 cos^(2) theta,1 + (sin 2 theta)/(2)),(x^(2) + x sin theta + sin^(2) theta,1 + (sin 2 theta)/(2),3 sin^(2) theta)| = 0

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If "cosec" theta = sqrt(5) , find the value of (i) 2-sin^(2)theta - cos^(2)theta (ii) 2 + (1)/(sin^(2)theta) - (cos^(2)theta)/(sin^(2)theta)

Prove that sin(2theta)/(1-cos2theta)=cot theta

The value of Delta=|(1,sin 3theta, sin^(3)theta),(2cos theta, sin 6 theta, sin^(3)2 theta),(4cos^(2)theta-1,sin 9 theta, sin^(3)3theta)| equal to

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

2(sin^(6) theta + cos^(6)theta) - 3(sin^(4)theta + cos^(4)theta)+ 1 = 0

cos theta sqrt(1-sin^(2)theta)=