Home
Class 11
MATHS
Prove that tan225^(@)cot405^(@)+tan765^(...

Prove that `tan225^(@)cot405^(@)+tan765^(@)cot675^(@)=0`

Text Solution

Verified by Experts

The correct Answer is:
Right side
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that : tan 225^@ cot 405^@+ tan 765^@ cot 675^@=0

Prove that: tan(-225^0)cot(-405^0)-tan(-765^0)cot(675^0)=0

Prove that (tan75^(@))/(cot15^(@))=1

Prove that: t a n 225^0cot 405^0+t a n 765^0cot 675^0=\ 0

Prove that tan 70^(@)=cot70^(@)++2cot40^(@)

Prove that: tan75^0+cot75^0=4

Prove that tan 70^(@)=cot70^(@)+2cot40^(@)

Without using trigonometric tables , prove that : (i) tan20^(@)tan40^(@) tan45^(@)tan50^(@)tan70^(@)=1 (ii) tan1^(@) tan2^(@)tan60^(@)tan88^(@)tan89^(@)=sqrt(3) (iii) cot5^(@)cot10^(@)cot30^(@)cot80^(@)cot85^(@)=sqrt(3) (iv) 4sin10^(@)sin20^(@)sin30^(@)sec70^(@)sec80^(@)=2

Prove that : (tan47^(@))/(cot 43^(@))=1

Prove that tan(cot^(-1)x)=cot(tan^(-1)x)