Home
Class 11
MATHS
If theta=-1000^(@), determine the sign o...

If `theta=-1000^(@)`, determine the sign of `theta-cos theta`.

Text Solution

AI Generated Solution

The correct Answer is:
To determine the sign of \( \theta - \cos \theta \) where \( \theta = -1000^\circ \), we can follow these steps: ### Step 1: Substitute the value of \( \theta \) We start with the expression: \[ \theta - \cos \theta \] Substituting \( \theta = -1000^\circ \): \[ -1000^\circ - \cos(-1000^\circ) \] ### Step 2: Simplify \( \cos(-1000^\circ) \) Using the property of cosine that \( \cos(-x) = \cos(x) \), we can rewrite: \[ -1000^\circ - \cos(1000^\circ) \] ### Step 3: Find the equivalent angle for \( 1000^\circ \) To find \( \cos(1000^\circ) \), we need to reduce \( 1000^\circ \) to an angle within the standard range of \( [0^\circ, 360^\circ] \). We do this by subtracting \( 360^\circ \) until we are within this range: \[ 1000^\circ - 2 \times 360^\circ = 1000^\circ - 720^\circ = 280^\circ \] Thus, \( \cos(1000^\circ) = \cos(280^\circ) \). ### Step 4: Determine the value of \( \cos(280^\circ) \) The angle \( 280^\circ \) lies in the fourth quadrant where cosine is positive. The reference angle for \( 280^\circ \) is: \[ 360^\circ - 280^\circ = 80^\circ \] Thus, \( \cos(280^\circ) = \cos(80^\circ) \) which is positive. ### Step 5: Substitute back into the expression Now we can substitute back: \[ -1000^\circ - \cos(1000^\circ) = -1000^\circ - \cos(280^\circ) \] Since \( \cos(280^\circ) > 0 \), we can denote it as \( c \) where \( c = \cos(280^\circ) > 0 \): \[ -1000^\circ - c \] ### Step 6: Determine the sign of the expression Since \( -1000^\circ \) is a large negative number and \( c \) is a positive number, the overall expression: \[ -1000^\circ - c \] will still be negative. Therefore, we conclude that: \[ \theta - \cos \theta < 0 \] ### Final Answer The sign of \( \theta - \cos \theta \) is negative. ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If theta = - 400^(@) , determine then the sign of sin theta + cos theta

If theta=20^(@) , then 8cos^(3)theta-6 cos theta is

If cos2theta=0 , then |(0,costheta,sin theta),(cos theta, sin theta, 0),(sin theta, 0, cos theta)|^(2) is equal to…………

(sin^(3) theta-cos^(3) theta)/(sin theta - cos theta)- (cos theta)/sqrt(1+ cot^(2) theta)-2 tan theta cot theta=-1 if

If E(theta)=[[cos theta, sin theta] , [-sin theta, cos theta]] then E(alpha) E(beta)=

sin^(3)theta + sin theta - sin theta cos^(2)theta =

If f (theta) = [[cos^(2) theta , cos theta sin theta,-sin theta],[cos theta sin theta , sin^(2) theta , cos theta ],[sin theta ,-cos theta , 0]] ,then f ( pi / 7) is

If (sin^(3)theta-cos^(3)theta)/(sin theta-cos theta)-(cos theta)/(sqrt(1+cot^(2)theta))-2 tan theta cot theta=-1 (AA theta in[0, 2pi], then

Statement I If 2 cos theta + sin theta=1(theta != (pi)/(2)) then the value of 7 cos theta + 6 sin theta is 2. Statement II If cos 2theta-sin theta=1/2, 0 lt theta lt pi/2 , then sin theta+cos 6 theta = 0 .

Prove that : (sin 5theta - 2 sin 3theta + sin theta)/(cos 5theta -cos theta) = tan theta