Home
Class 11
MATHS
Prove that sin^(4)theta-cos^(4)theta=s...

Prove that
`sin^(4)theta-cos^(4)theta=sin^(2)theta-cos^(2)theta`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(c)|12 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(d)|48 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that : sin^(4)theta-cos^(4)theta=2sin^(2)theta-1

Prove that : sin^(2)theta+cos^(4)theta=cos^(2)theta+sin^(4)theta

Prove that sin^(4)theta+2sin^(2)thetacos^(2)theta+cos^(4)theta=1

Prove that : (sin^(4)theta- cos^(4) theta+ 1) "cosec"^(2)theta=2

The value of sin^(8)theta+cos^(8)theta+sin^(6)theta cos^(2)theta+3sin^(4)theta cos^(2)theta+cos^(6)theta sin^(2)theta+3sin^(2)thetacos^(4)theta is equal to

Prove that (3-4sin^(2)theta)/(cos^(2)theta)=3-tan^(2)theta

Prove that: 1+cos^2 2theta=2(cos^4theta+sin^4theta)

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

Prove that 1+cos^2 2theta=2(cos^4theta+sin^4theta)