Home
Class 11
MATHS
Prove that sec^(4)A-sec^(2)A=tan^(2)A+...

Prove that
`sec^(4)A-sec^(2)A=tan^(2)A+tan^(4)A`.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(c)|12 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(d)|48 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(a)|15 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that: i) cot^(2)A+cot^(4)A="cosec"^(4)A-"cosec"^(2)A ii) tan^(2)A+tan^(4)A=sec^(4)A-sec^(2)A

Prove that: (sec4A-1)/(sec8A-1)=tan2A. cot8A

Prove: tan^2Asec^2B-sec^2Atan^2B=tan^2A-tan^2B

Prove that : sec^(4)theta-tan^(4)theta=1+2tan^(2)theta

Prove that : sqrt (sec^(2) A + cosec^(2) A) = tan A + cot A

Prove that (sec^(2)theta-1)/(tan^(2)theta)=1

Prove that : tan^(4) A + tan^(2) A = sec^(4) A - sec^(2) A

Prove the following identities: sec^4A-sec^2A=tan^4A+tan^2A

Prove the following identities: sec^4A-sec^2A=tan^4A+tan^2A

Prove that: 2sec^(2)A-sec^(4)A-2"cosec"^(2)A+"cosec"^(4)A=cot^(4)A-tan^(4)A