Home
Class 11
MATHS
If cosA=0.6, find the value of 5sinA-3ta...

If `cosA=0.6`, find the value of `5sinA-3tan A.`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \cos A = 0.6 \) and we need to find the value of \( 5 \sin A - 3 \tan A \), we can follow these steps: ### Step 1: Find \( \sin A \) We know the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] Given \( \cos A = 0.6 \), we can find \( \sin A \): \[ \sin^2 A = 1 - \cos^2 A \] Substituting the value of \( \cos A \): \[ \sin^2 A = 1 - (0.6)^2 = 1 - 0.36 = 0.64 \] Taking the square root: \[ \sin A = \sqrt{0.64} = 0.8 \] ### Step 2: Find \( \tan A \) The tangent function is defined as: \[ \tan A = \frac{\sin A}{\cos A} \] Substituting the values we found: \[ \tan A = \frac{0.8}{0.6} = \frac{8}{6} = \frac{4}{3} \approx 1.33 \] ### Step 3: Substitute values into the expression Now we substitute \( \sin A \) and \( \tan A \) into the expression \( 5 \sin A - 3 \tan A \): \[ 5 \sin A - 3 \tan A = 5(0.8) - 3(1.33) \] Calculating each term: \[ 5(0.8) = 4 \] \[ 3(1.33) = 3.99 \] Now substituting these values: \[ 5 \sin A - 3 \tan A = 4 - 3.99 = 0.01 \] ### Final Answer Thus, the value of \( 5 \sin A - 3 \tan A \) is: \[ \boxed{0.01} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(d)|48 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If sinA=cosA,then find the value of sin 2A.

If cotA=3/4 , find the value of 3cosA+5sinA, where A lies in the first quadrant.

If cos e cA=2, find the value of 1/(tanA)+(sinA)/(1+cosA)

If cos e c\ A=2 , find the value of 1/(tanA)+(sinA)/(1+cosA)

If sinA+cosA=0 and A lies in 4th quadrant, find the values of sinA and cosA.

sinA+sinB= r3 (cosB−cosA). Find the value of sin3A+sin3B

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : tan (A/2)

If tanA=5/(12) , find the value of (sinA+cosA)secA .

If sinA = 3/5 and 0^@ lt A lt 90^@ , find the value of sin 2A, cos 2A, tan 2A, and sin 4A .

If 6 tan A - 5 =0 , find the value of : " " (3 sin A - cos A)/( 5 cos A + 9 sin A)