Home
Class 11
MATHS
If theta lies in the second quadrant and...

If `theta` lies in the second quadrant and `tan theta=(-5)/(12)`, find the value of `(2cos theta)/(1-sin theta)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \(\frac{2 \cos \theta}{1 - \sin \theta}\) given that \(\tan \theta = -\frac{5}{12}\) and \(\theta\) lies in the second quadrant. ### Step 1: Understand the given information We know that: - \(\tan \theta = \frac{\text{perpendicular}}{\text{base}} = -\frac{5}{12}\) - Since \(\theta\) is in the second quadrant, \(\sin \theta\) is positive and \(\cos \theta\) is negative. ### Step 2: Set up the triangle From \(\tan \theta = -\frac{5}{12}\), we can interpret this as: - Perpendicular (opposite side) = 5 - Base (adjacent side) = 12 However, since we are in the second quadrant, the base will be negative: - Perpendicular = 5 - Base = -12 ### Step 3: Calculate the hypotenuse Using the Pythagorean theorem: \[ \text{Hypotenuse}^2 = \text{Perpendicular}^2 + \text{Base}^2 \] \[ \text{Hypotenuse}^2 = 5^2 + (-12)^2 = 25 + 144 = 169 \] \[ \text{Hypotenuse} = \sqrt{169} = 13 \] ### Step 4: Find \(\sin \theta\) and \(\cos \theta\) Now we can find \(\sin \theta\) and \(\cos \theta\): \[ \sin \theta = \frac{\text{Perpendicular}}{\text{Hypotenuse}} = \frac{5}{13} \] \[ \cos \theta = \frac{\text{Base}}{\text{Hypotenuse}} = \frac{-12}{13} \] ### Step 5: Substitute values into the expression Now we substitute \(\cos \theta\) and \(\sin \theta\) into the expression \(\frac{2 \cos \theta}{1 - \sin \theta}\): \[ \frac{2 \cos \theta}{1 - \sin \theta} = \frac{2 \left(-\frac{12}{13}\right)}{1 - \frac{5}{13}} \] ### Step 6: Simplify the expression First, simplify the denominator: \[ 1 - \frac{5}{13} = \frac{13}{13} - \frac{5}{13} = \frac{8}{13} \] Now substitute this back into the expression: \[ \frac{2 \left(-\frac{12}{13}\right)}{\frac{8}{13}} = \frac{-24/13}{8/13} \] This simplifies to: \[ \frac{-24}{8} = -3 \] ### Final Answer Thus, the value of \(\frac{2 \cos \theta}{1 - \sin \theta}\) is \(-3\). ---
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(d)|48 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If tan theta = b/a, then find the value of a cos 2theta + b sin 2theta .

If theta lies in the first quadrant and 5 tan theta = 4 , " then " (5 sin theta - 3 cos theta )/( sin theta + 2 cos theta )=

If theta lies in the second quadrant. Then the value of sqrt((1-sin theta)/(1+sin theta))+sqrt((1+sin theta)/(1-sin theta)) is equal to :

If theta lies in second quadrant, then the quadrant in which -theta/(2) lies is

If cot theta = (3)/(4) find the value of : ( sin theta- cos theta)/(sin theta+cos theta)

If sin theta = 12/13 and theta lies in the second quadrant, find the value of sec theta+tan theta .

If cot theta = 1 , find the value of : 5 tan^2 theta + 2 sin^2 theta - 3

Find the value of (1+cos theta+sin theta)/(1-cos theta +sin theta)

If tan theta=2, then the find the value of (2sinthetacostheta)/(cos^(2)theta-sin^(2)theta) .

If sin theta sec theta =-1 and theta lies in the second quadrant, find sin theta and sec theta .