Home
Class 11
MATHS
If A is in the fourth quadrant and cos A...

If A is in the fourth quadrant and `cos A=(5)/(13)`, find the value of `(13 sin A+5 secA)/(5tanA+6" cosec"A)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression \((13 \sin A + 5 \sec A) / (5 \tan A + 6 \csc A)\) given that \(\cos A = \frac{5}{13}\) and \(A\) is in the fourth quadrant. ### Step 1: Find \(\sin A\) Using the Pythagorean identity: \[ \sin^2 A + \cos^2 A = 1 \] We can substitute \(\cos A\): \[ \sin^2 A + \left(\frac{5}{13}\right)^2 = 1 \] \[ \sin^2 A + \frac{25}{169} = 1 \] \[ \sin^2 A = 1 - \frac{25}{169} = \frac{169 - 25}{169} = \frac{144}{169} \] Taking the square root: \[ \sin A = \pm \frac{12}{13} \] Since \(A\) is in the fourth quadrant, \(\sin A\) is negative: \[ \sin A = -\frac{12}{13} \] ### Step 2: Find \(\sec A\) The secant function is the reciprocal of the cosine function: \[ \sec A = \frac{1}{\cos A} = \frac{1}{\frac{5}{13}} = \frac{13}{5} \] ### Step 3: Find \(\tan A\) The tangent function is defined as: \[ \tan A = \frac{\sin A}{\cos A} = \frac{-\frac{12}{13}}{\frac{5}{13}} = -\frac{12}{5} \] ### Step 4: Find \(\csc A\) The cosecant function is the reciprocal of the sine function: \[ \csc A = \frac{1}{\sin A} = \frac{1}{-\frac{12}{13}} = -\frac{13}{12} \] ### Step 5: Substitute values into the expression Now we substitute the values into the expression: \[ \frac{13 \sin A + 5 \sec A}{5 \tan A + 6 \csc A} \] Substituting the values we found: \[ = \frac{13 \left(-\frac{12}{13}\right) + 5 \left(\frac{13}{5}\right)}{5 \left(-\frac{12}{5}\right) + 6 \left(-\frac{13}{12}\right)} \] ### Step 6: Simplify the numerator Calculating the numerator: \[ = \frac{-12 + 13}{-12 - \frac{78}{12}} \] \[ = \frac{1}{-12 - 6.5} = \frac{1}{-18.5} \] ### Step 7: Simplify the denominator Calculating the denominator: \[ = -12 - 6.5 = -18.5 \] ### Step 8: Final calculation Now we have: \[ = \frac{1}{-18.5} = -\frac{2}{37} \] Thus, the final answer is: \[ \boxed{-\frac{2}{37}} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(d)|48 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(b)|19 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If tanA=5/(12) , find the value of (sinA+cosA)secA .

If sinx=(5)/(13) and cosx=-(12)/(13) , find the value of sin 2x.

If theta lies in the second quadrant and tan theta=(-5)/(12) , find the value of (2cos theta)/(1-sin theta) .

If cos x=3/5 and x lies in the fourth quadrant find the values of cosec x+ cot x .

If cos A=4/5 , then the value of tanA is

If A lies in the second quadrant and 3tanA + 4=0 , then find the value of 2cotA-5cosA+ sinA .

If sinA=4/5 and cosB=5/13, find the value of the following : "sin"(A+B)

Find the value of cot^(-1)3/4+sin^(-1)5/(13)

If 6 tan A - 5 =0 , find the value of : " " (3 sin A - cos A)/( 5 cos A + 9 sin A)

If sinA=-4/5 and A lies in 3rd quadrant, find the values of (i) sin2A ii) cos2A .