Home
Class 11
MATHS
(tan(-theta))/(sin(540^(@)+theta))...

`(tan(-theta))/(sin(540^(@)+theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\tan(-\theta)}{\sin(540^\circ + \theta)}\), we will simplify each component step by step. ### Step 1: Simplify \(\tan(-\theta)\) Using the property of the tangent function, we know that: \[ \tan(-\theta) = -\tan(\theta) \] Thus, we can rewrite the numerator: \[ \tan(-\theta) = -\tan(\theta) \] ### Step 2: Simplify \(\sin(540^\circ + \theta)\) Next, we simplify the sine function. Since \(540^\circ\) is a multiple of \(180^\circ\) (specifically, \(540^\circ = 180^\circ \times 3\)), we can apply the sine addition formula: \[ \sin(540^\circ + \theta) = \sin(180^\circ \times 3 + \theta) = \sin(\theta) \] However, since \(540^\circ\) is in the third quadrant, we have: \[ \sin(540^\circ + \theta) = -\sin(\theta) \] ### Step 3: Substitute the simplified terms back into the expression Now, substituting the simplified terms back into the original expression, we have: \[ \frac{\tan(-\theta)}{\sin(540^\circ + \theta)} = \frac{-\tan(\theta)}{-\sin(\theta)} = \frac{\tan(\theta)}{\sin(\theta)} \] ### Step 4: Rewrite \(\tan(\theta)\) in terms of sine and cosine We know that: \[ \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \] Thus, substituting this into our expression gives: \[ \frac{\tan(\theta)}{\sin(\theta)} = \frac{\frac{\sin(\theta)}{\cos(\theta)}}{\sin(\theta)} = \frac{1}{\cos(\theta)} \] ### Step 5: Final result The final result can be expressed as: \[ \frac{1}{\cos(\theta)} = \sec(\theta) \] Therefore, the value of the expression \(\frac{\tan(-\theta)}{\sin(540^\circ + \theta)}\) is: \[ \sec(\theta) \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(c)|12 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Solve cot theta = sin 2 theta by substituting sin 2 theta =( 2 tan theta )/( 1+tan^(2) theta ) and again by substituting sin 2 theta = 2 sin theta * cos theta and check whether the two answer are same or not .

By using above basic addition/ subtraction formulae, prove that (i) tan (A+B)=(tan A+tan B)/(1-tan A tan B) , (ii) tan (A-B)=(tan A-tanB)/(1+tan A tan B) (iii) sin2theta=2sintheta costheta , (iv) cos2theta=cos^(2)theta=1-2sin^(2)theta=2cos^(2)theta-1 (v) tan 2theta=(2 tan theta)/(1-tan^(2) theta)

Prove that (cos(90^(@)+theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta))

If pi/2 < theta < (3pi)/2 then sqrt ((1-sin theta)/(1+sin theta))= a. sec theta-tan theta, b. sec theta + tan theta, c. tan theta-sec theta, d. none of these

Prove: (sin theta xx tan ""(theta)/(2)) = 2sin ^(2) ""(theta)/( 2)

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

Prove that (1+sin 2theta)/(1-sin 2theta) = ((1+tan theta)/(1-tan theta))^2

Prove that : (cos theta)/(1-tan theta) + (sin theta)/(1-cot theta) = sin theta + cos theta

Prove that ("sin"theta-2"sin"^(3)theta)/(2"cos"^(3)theta-"cos"theta)="tan"theta

The number of roots of (1-tan theta) (1+sin 2 theta)=1+tan theta for theta in [0, 2pi] is

ICSE-TRIGONOMETRICAL FUNCTIONS -Exercise 4(d)
  1. Evaluate (cos3 theta-2cos 4theta)/(sin 3 theta+2sin 4theta), when thet...

    Text Solution

    |

  2. Simplify : (cos(-theta))/(sin (90^(@)+theta))

    Text Solution

    |

  3. (tan(-theta))/(sin(540^(@)+theta))

    Text Solution

    |

  4. (sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)co...

    Text Solution

    |

  5. (sin150^(@)-5cos300^(@)+7tan 225^(@))/(tan 135^(@)+3sin 210^(@))

    Text Solution

    |

  6. If sin (7 phi+9^(@))=cos2phi, find a value of phi.

    Text Solution

    |

  7. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  8. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  9. Find the values of theta lying between 0^(@) and 360^(@) when sec th...

    Text Solution

    |

  10. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  11. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  12. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  13. Find the values of theta lying between 0^(@) and 360^(@) when costhe...

    Text Solution

    |

  14. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  15. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  16. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  17. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  18. Find six angles for which sin theta=-(sqrt(3))/(2).

    Text Solution

    |

  19. Find all the angles between 0^(@) and 720^(@) whose tangent is -(1)/(s...

    Text Solution

    |

  20. Find the values of theta between 0^(@) and 360^(@) which satisfy the e...

    Text Solution

    |