Home
Class 11
MATHS
(sin(90^(@)-theta)sec(180^(@)-theta)sin(...

`(sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec"(90^(@)+theta))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{\sin(90^\circ - \theta) \cdot \sec(180^\circ - \theta) \cdot \sin(-\theta)}{\sin(180^\circ + \theta) \cdot \cot(360^\circ - \theta) \cdot \csc(90^\circ + \theta)}, \] we will simplify each trigonometric function step by step. ### Step 1: Simplify \(\sin(90^\circ - \theta)\) Using the co-function identity: \[ \sin(90^\circ - \theta) = \cos(\theta). \] ### Step 2: Simplify \(\sec(180^\circ - \theta)\) In the second quadrant, the secant function is negative: \[ \sec(180^\circ - \theta) = -\sec(\theta). \] ### Step 3: Simplify \(\sin(-\theta)\) Using the odd function property of sine: \[ \sin(-\theta) = -\sin(\theta). \] ### Step 4: Simplify \(\sin(180^\circ + \theta)\) In the third quadrant, sine is negative: \[ \sin(180^\circ + \theta) = -\sin(\theta). \] ### Step 5: Simplify \(\cot(360^\circ - \theta)\) In the fourth quadrant, cotangent is negative: \[ \cot(360^\circ - \theta) = -\cot(\theta). \] ### Step 6: Simplify \(\csc(90^\circ + \theta)\) In the second quadrant, cosecant is positive: \[ \csc(90^\circ + \theta) = \sec(\theta). \] ### Step 7: Substitute all simplified terms back into the expression Now we can substitute these simplified terms back into the original expression: \[ \frac{\cos(\theta) \cdot (-\sec(\theta)) \cdot (-\sin(\theta))}{(-\sin(\theta)) \cdot (-\cot(\theta)) \cdot \sec(\theta)}. \] ### Step 8: Simplify the expression The expression simplifies to: \[ \frac{\cos(\theta) \cdot \sec(\theta) \cdot \sin(\theta)}{\sin(\theta) \cdot \cot(\theta) \cdot \sec(\theta)}. \] ### Step 9: Cancel common terms The \(\sec(\theta)\) terms cancel: \[ \frac{\cos(\theta) \cdot \sin(\theta)}{\sin(\theta) \cdot \cot(\theta)}. \] The \(\sin(\theta)\) terms also cancel (assuming \(\sin(\theta) \neq 0\)): \[ \frac{\cos(\theta)}{\cot(\theta)}. \] ### Step 10: Rewrite \(\cot(\theta)\) Recall that \(\cot(\theta) = \frac{\cos(\theta)}{\sin(\theta)}\): \[ \frac{\cos(\theta)}{\cot(\theta)} = \frac{\cos(\theta)}{\frac{\cos(\theta)}{\sin(\theta)}} = \sin(\theta). \] ### Final Answer Thus, the final value of the expression is: \[ \sin(\theta). \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(c)|12 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

Prove that: (t a n(90^0-theta)s e c(180^0-theta)sin(-theta))/(sin(180^0+theta)cot(360^0-theta)cosec(90^0-theta))=1

sin(270^(@)-theta).sin(90^(@)-theta)-cos(270^(@)-theta).cos(90^(@)+theta)=

Prove that (cos(90^(@)+theta)sec(270^(@)+theta)sin(180^(@)+theta))/(cosec(-theta)cos(270^(@)-theta)tan(180^(@)+theta))

Prove that : (i) sinthetacos(90^(@)-theta)+sin(90^(@)-theta)costheta=1 (ii) sectheta" cosec"(90^(@)-theta)-tanthetacot(90^(@)-theta)=1 (iii) (sintheta*sec(90^(@)-theta)cot(90^(@)-theta))/("cosec"(90^(@)-theta)*costheta*tantheta)-(tan(90^(@)-theta))/(cottheta)=0 (iv) (1+sin(90^(@)-theta))/(cos(90^(@)-0))+(cos(90^(@)-theta))/(1+sin(90^(@)-0))=2"cosec"theta

If xsin(90^@-theta)cot(90^@-theta)=cos(90^@-theta) , then x=

sin(90^circ+theta) is

The value of (cos(90^0-theta)sec(90^0-theta)tantheta)/(cos e c(90^0-theta)sin(90^0-theta)cot(90^0-theta))+(tan(90^0-theta))/(cottheta)"i s" 1 (b) -1 (c) 2 (d) -2

sin(90^circ+2theta) is

Prove that (i) sin(40^(@)-theta)-cos(50^(@)+theta)=0 (ii) sec(65^(@)+theta)-"cosec"(25^(@)-theta)=0

Prove that ("cos"(90^0+theta)"sec"(-theta)"tan"(180^0-theta))/("sec"(360^0-theta)"sin"(180^0+theta)"cot"(90^0-theta))=-1.

ICSE-TRIGONOMETRICAL FUNCTIONS -Exercise 4(d)
  1. Simplify : (cos(-theta))/(sin (90^(@)+theta))

    Text Solution

    |

  2. (tan(-theta))/(sin(540^(@)+theta))

    Text Solution

    |

  3. (sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)co...

    Text Solution

    |

  4. (sin150^(@)-5cos300^(@)+7tan 225^(@))/(tan 135^(@)+3sin 210^(@))

    Text Solution

    |

  5. If sin (7 phi+9^(@))=cos2phi, find a value of phi.

    Text Solution

    |

  6. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  7. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  8. Find the values of theta lying between 0^(@) and 360^(@) when sec th...

    Text Solution

    |

  9. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  10. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  11. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  12. Find the values of theta lying between 0^(@) and 360^(@) when costhe...

    Text Solution

    |

  13. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  14. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  15. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  16. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  17. Find six angles for which sin theta=-(sqrt(3))/(2).

    Text Solution

    |

  18. Find all the angles between 0^(@) and 720^(@) whose tangent is -(1)/(s...

    Text Solution

    |

  19. Find the values of theta between 0^(@) and 360^(@) which satisfy the e...

    Text Solution

    |

  20. Find the values of theta between 0^(@) and 360^(@) which satisfy the e...

    Text Solution

    |