Home
Class 11
MATHS
If 0^(@)lt theta lt 90^(@) and cos theta...

If `0^(@)lt theta lt 90^(@)` and `cos theta=(4)/(5)` find the values of
`cos(90^(@)+theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos(90^\circ + \theta) \) given that \( \cos \theta = \frac{4}{5} \) and \( 0^\circ < \theta < 90^\circ \). ### Step-by-Step Solution: 1. **Use the Cosine Addition Formula**: We know that: \[ \cos(90^\circ + \theta) = \cos 90^\circ \cos \theta - \sin 90^\circ \sin \theta \] 2. **Substitute Known Values**: We know that: \[ \cos 90^\circ = 0 \quad \text{and} \quad \sin 90^\circ = 1 \] Substituting these values into the formula gives: \[ \cos(90^\circ + \theta) = 0 \cdot \cos \theta - 1 \cdot \sin \theta \] This simplifies to: \[ \cos(90^\circ + \theta) = -\sin \theta \] 3. **Find \( \sin \theta \)**: We can use the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \] Substituting \( \cos \theta = \frac{4}{5} \): \[ \sin^2 \theta + \left(\frac{4}{5}\right)^2 = 1 \] This simplifies to: \[ \sin^2 \theta + \frac{16}{25} = 1 \] Rearranging gives: \[ \sin^2 \theta = 1 - \frac{16}{25} \] Finding a common denominator: \[ \sin^2 \theta = \frac{25}{25} - \frac{16}{25} = \frac{9}{25} \] 4. **Calculate \( \sin \theta \)**: Taking the square root: \[ \sin \theta = \sqrt{\frac{9}{25}} = \frac{3}{5} \] Since \( \theta \) is in the first quadrant, \( \sin \theta \) is positive. 5. **Substitute Back to Find \( \cos(90^\circ + \theta) \)**: Now substituting \( \sin \theta \) back into the equation for \( \cos(90^\circ + \theta) \): \[ \cos(90^\circ + \theta) = -\sin \theta = -\frac{3}{5} \] ### Final Answer: \[ \cos(90^\circ + \theta) = -\frac{3}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(c)|12 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of "cosec"(180^(@)+theta)

If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of sin (270^(@)-theta)

If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of tan(360^(@)-theta)

Given : 4 sintheta = 3 cos theta , find the value of: cos theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

Solve for theta ( 0 ^(@) lt theta lt 90^(@)) 2 cos 3 theta= 1

If 90^(@) < theta < 180^(@) and sin theta = 20/29 , then cos theta = ?

If 4sin^(2)theta-1=0 and angle theta is less than 90^(@) , find the value of theta and hence the value of cos^(2)theta+tan^(2)theta .

If 4sin^(2)theta-1=0 and angle theta is less than 90^(@) , find the value of theta and hence the value of cos^(2)theta+tan^(2)theta .

In the figure above, IF cos theta =3/5 , what is the value of cos (90-theta) ?

ICSE-TRIGONOMETRICAL FUNCTIONS -Exercise 4(d)
  1. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  2. Find the values of theta lying between 0^(@) and 360^(@) when sec th...

    Text Solution

    |

  3. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  4. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  5. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  6. Find the values of theta lying between 0^(@) and 360^(@) when costhe...

    Text Solution

    |

  7. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  8. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  9. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  10. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  11. Find six angles for which sin theta=-(sqrt(3))/(2).

    Text Solution

    |

  12. Find all the angles between 0^(@) and 720^(@) whose tangent is -(1)/(s...

    Text Solution

    |

  13. Find the values of theta between 0^(@) and 360^(@) which satisfy the e...

    Text Solution

    |

  14. Find the values of theta between 0^(@) and 360^(@) which satisfy the e...

    Text Solution

    |

  15. If tan theta=0.4, when theta lies between 0^(@) and 360^(@), write dow...

    Text Solution

    |

  16. If cosx^(@)=sin 200^(@), find the possible values of x between -180^(@...

    Text Solution

    |

  17. If A,B,C are angles of a triangle, prove that cosC=-cos(A+B).

    Text Solution

    |

  18. If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"...

    Text Solution

    |

  19. If A,B,C are angles of a triangle, prove that (tan (B+C)+tan(C+A)+ta...

    Text Solution

    |

  20. If A,B,C,D are the angles of a quadrilateral, prove that "cos"1/2(A+B)...

    Text Solution

    |