Home
Class 11
MATHS
If 0^(@)lt theta lt 90^(@) and cos theta...

If `0^(@)lt theta lt 90^(@)` and `cos theta=(4)/(5)` find the values of
`"cosec"(180^(@)+theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \csc(180^\circ + \theta) \) given that \( \cos \theta = \frac{4}{5} \) and \( 0^\circ < \theta < 90^\circ \). ### Step-by-step Solution: 1. **Find \( \sin \theta \)**: We know that \( \sin^2 \theta + \cos^2 \theta = 1 \). \[ \sin^2 \theta = 1 - \cos^2 \theta \] Substituting \( \cos \theta = \frac{4}{5} \): \[ \sin^2 \theta = 1 - \left(\frac{4}{5}\right)^2 = 1 - \frac{16}{25} = \frac{9}{25} \] Taking the square root: \[ \sin \theta = \sqrt{\frac{9}{25}} = \frac{3}{5} \] 2. **Determine \( \csc(180^\circ + \theta) \)**: The cosecant function is the reciprocal of the sine function: \[ \csc(180^\circ + \theta) = \frac{1}{\sin(180^\circ + \theta)} \] We know that: \[ \sin(180^\circ + \theta) = -\sin \theta \] Therefore: \[ \csc(180^\circ + \theta) = \frac{1}{-\sin \theta} = -\frac{1}{\sin \theta} \] 3. **Substituting the value of \( \sin \theta \)**: Now substituting \( \sin \theta = \frac{3}{5} \): \[ \csc(180^\circ + \theta) = -\frac{1}{\frac{3}{5}} = -\frac{5}{3} \] ### Final Answer: \[ \csc(180^\circ + \theta) = -\frac{5}{3} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Chapter test |8 Videos
  • TRIGONOMETRICAL FUNCTIONS

    ICSE|Exercise Exercise 4(c)|12 Videos
  • TRIGONOMETRIC EQUATIONS

    ICSE|Exercise CHAPTER TEST |6 Videos

Similar Questions

Explore conceptually related problems

If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of cos(90^(@)+theta)

If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of tan(360^(@)-theta)

If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of sin (270^(@)-theta)

If 5 cot theta =12 , find the value of : "cosec" theta + sec theta

If "cosec"theta=2 ,then find the value of "cosec" 3theta

Solve for theta ( 0 ^(@) lt theta lt 90^(@)) 2 cos 3 theta= 1

Given : 4 sintheta = 3 cos theta , find the value of: cot^2 theta - "cosec"^2 theta

If 90^(@) < theta < 180^(@) and sin theta = 20/29 , then cos theta = ?

If "cosec" theta = sqrt5 , find the value of : 2-sin^2theta - cos^2 theta

If 3 sin theta + 4 cos theta=5 , then find the value of 4 sin theta-3 cos theta .

ICSE-TRIGONOMETRICAL FUNCTIONS -Exercise 4(d)
  1. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  2. Find the values of theta lying between 0^(@) and 360^(@) when sec th...

    Text Solution

    |

  3. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  4. Find the values of theta lying between 0^(@) and 360^(@) when tan th...

    Text Solution

    |

  5. Find the values of theta lying between 0^(@) and 360^(@) when sin th...

    Text Solution

    |

  6. Find the values of theta lying between 0^(@) and 360^(@) when costhe...

    Text Solution

    |

  7. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  8. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  9. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  10. If 0^(@)lt theta lt 90^(@) and cos theta=(4)/(5) find the values of ...

    Text Solution

    |

  11. Find six angles for which sin theta=-(sqrt(3))/(2).

    Text Solution

    |

  12. Find all the angles between 0^(@) and 720^(@) whose tangent is -(1)/(s...

    Text Solution

    |

  13. Find the values of theta between 0^(@) and 360^(@) which satisfy the e...

    Text Solution

    |

  14. Find the values of theta between 0^(@) and 360^(@) which satisfy the e...

    Text Solution

    |

  15. If tan theta=0.4, when theta lies between 0^(@) and 360^(@), write dow...

    Text Solution

    |

  16. If cosx^(@)=sin 200^(@), find the possible values of x between -180^(@...

    Text Solution

    |

  17. If A,B,C are angles of a triangle, prove that cosC=-cos(A+B).

    Text Solution

    |

  18. If A,B,C are angles of a triangle, prove that "tan "(B+C)/(2)="cot"...

    Text Solution

    |

  19. If A,B,C are angles of a triangle, prove that (tan (B+C)+tan(C+A)+ta...

    Text Solution

    |

  20. If A,B,C,D are the angles of a quadrilateral, prove that "cos"1/2(A+B)...

    Text Solution

    |