Home
Class 11
MATHS
Find the locus of a complex number z suc...

Find the locus of a complex number z such that arg `((z-2)/(z+2))= (pi)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of the complex number \( z \) such that \( \arg\left(\frac{z-2}{z+2}\right) = \frac{\pi}{3} \), we can follow these steps: ### Step 1: Set up the equation Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. The equation becomes: \[ \arg\left(\frac{(x + iy) - 2}{(x + iy) + 2}\right) = \frac{\pi}{3} \] ### Step 2: Simplify the expression This can be rewritten as: \[ \arg\left(\frac{(x - 2) + iy}{(x + 2) + iy}\right) = \frac{\pi}{3} \] ### Step 3: Use the property of arguments The argument of a complex number \( \frac{a + bi}{c + di} \) can be expressed as: \[ \arg(a + bi) - \arg(c + di) \] Thus, we have: \[ \arg((x - 2) + iy) - \arg((x + 2) + iy) = \frac{\pi}{3} \] ### Step 4: Express the arguments Let: \[ \theta_1 = \arg((x - 2) + iy) \] \[ \theta_2 = \arg((x + 2) + iy) \] Then: \[ \theta_1 - \theta_2 = \frac{\pi}{3} \] ### Step 5: Use the tangent function We can express the arguments in terms of tangent: \[ \tan(\theta_1) = \frac{y}{x - 2}, \quad \tan(\theta_2) = \frac{y}{x + 2} \] Using the tangent subtraction formula: \[ \tan(\theta_1 - \theta_2) = \frac{\tan(\theta_1) - \tan(\theta_2}{1 + \tan(\theta_1)\tan(\theta_2)} = \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \] ### Step 6: Substitute the values Substituting the values of \( \tan(\theta_1) \) and \( \tan(\theta_2) \): \[ \frac{\frac{y}{x - 2} - \frac{y}{x + 2}}{1 + \frac{y}{x - 2} \cdot \frac{y}{x + 2}} = \sqrt{3} \] ### Step 7: Simplify the equation This simplifies to: \[ \frac{y\left(\frac{(x + 2) - (x - 2)}{(x - 2)(x + 2)}\right)}{1 + \frac{y^2}{(x - 2)(x + 2)}} = \sqrt{3} \] \[ \frac{y\left(\frac{4}{(x - 2)(x + 2)}\right)}{1 + \frac{y^2}{(x - 2)(x + 2)}} = \sqrt{3} \] ### Step 8: Cross-multiply and simplify Cross-multiplying gives: \[ 4y = \sqrt{3}\left((x - 2)(x + 2) + y^2\right) \] Expanding and rearranging leads to: \[ \sqrt{3}x^2 + \sqrt{3}y^2 - 4y - 4\sqrt{3} = 0 \] ### Final Step: Identify the locus This is the equation of a conic section. Rearranging gives the locus of the complex number \( z \): \[ \sqrt{3}x^2 + \sqrt{3}y^2 - 4y - 4\sqrt{3} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (F )|28 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the complex number z such that z^2+|z|=0

The locus of any point P(z) on argand plane is arg((z-5i)/(z+5i))=(pi)/(4) . Area of the region bounded by the locus of a complex number Z satisfying arg((z+5i)/(z-5i))=+-(pi)/(4)

If the locus of the complex number z given by arg(z+i)-arg(z-i)=(2pi)/(3) is an arc of a circle, then the length of the arc is

Find the locus of a complex number z= x+ yi satisfying the relation arg (z-a)=(pi)/(4), a in R Illustrate the locus of z in the Argand plane

Find the locus of the complex number z=x+iy , satisfying relations arg(z-1)=(pi)/(4) and |z-2-3i|=2 .

Complex number z lies on the curve S-= arg(z+3)/(z+3i) =-(pi)/(4)

The point representing the complex number z for which arg ((z-2)/(z+2))=pi/3 lies on

Find the locus of a complex number, z=x +iy , satisfying the relation |(z-3i)/(z+3i)| le sqrt(2) . Illustrate the locus of z in the Argand plane.

Find the locus of a complex number z= x+yi , satisfying the relation |3z- 4i| le |3z + 2| . Illustrate the locus in the Argand plane

Statement-1 : let z_(1) and z_(2) be two complex numbers such that arg (z_(1)) = pi/3 and arg(z_(2)) = pi/6 " then arg " (z_(1) z_(2)) = pi/2 and Statement -2 : arg(z_(1)z_(2)) = arg(z_(1)) + arg(z_(2)) + 2kpi, k in { 0,1,-1}