Home
Class 11
MATHS
Find the locus of z if omega= (z)/(z- (1...

Find the locus of z if `omega= (z)/(z- (1)/(3)i), |omega| =1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the locus of \( z \) given that \( \omega = \frac{z}{z - \frac{1}{3}i} \) and \( |\omega| = 1 \), we can follow these steps: ### Step 1: Set up the equation We start with the given equation: \[ \omega = \frac{z}{z - \frac{1}{3}i} \] Given that \( |\omega| = 1 \), we can express this as: \[ |\omega| = 1 \implies \left| \frac{z}{z - \frac{1}{3}i} \right| = 1 \] ### Step 2: Apply the modulus property Using the property of modulus, we can rewrite the equation: \[ |z| = |z - \frac{1}{3}i| \] ### Step 3: Substitute \( z \) in terms of \( x \) and \( y \) Let \( z = x + iy \), where \( x \) and \( y \) are real numbers. Then we have: \[ |z| = \sqrt{x^2 + y^2} \] and \[ |z - \frac{1}{3}i| = |x + i(y - \frac{1}{3})| = \sqrt{x^2 + \left(y - \frac{1}{3}\right)^2} \] ### Step 4: Set up the equation with the moduli Now, we can equate the two moduli: \[ \sqrt{x^2 + y^2} = \sqrt{x^2 + \left(y - \frac{1}{3}\right)^2} \] ### Step 5: Square both sides Squaring both sides to eliminate the square roots gives us: \[ x^2 + y^2 = x^2 + \left(y - \frac{1}{3}\right)^2 \] ### Step 6: Expand and simplify Expanding the right side: \[ x^2 + y^2 = x^2 + \left(y^2 - \frac{2y}{3} + \frac{1}{9}\right) \] This simplifies to: \[ x^2 + y^2 = x^2 + y^2 - \frac{2y}{3} + \frac{1}{9} \] ### Step 7: Cancel terms and rearrange Cancel \( x^2 + y^2 \) from both sides: \[ 0 = -\frac{2y}{3} + \frac{1}{9} \] Rearranging gives: \[ \frac{2y}{3} = \frac{1}{9} \] ### Step 8: Solve for \( y \) Multiplying both sides by 3: \[ 2y = \frac{1}{3} \] Dividing by 2: \[ y = \frac{1}{6} \] ### Step 9: Conclusion The locus of \( z \) is the line: \[ y = -\frac{1}{6} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (F )|28 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (D)|20 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the locus of z if arg ((z-1)/(z+1))= pi/4

If complex number z lies on the curve |z - (- 1+ i)| = 1 , then find the locus of the complex number w =(z+i)/(1-i), i =sqrt-1 .

What is the locus of w if w=3/za n d|z-1|=1?

If |z|=k and omega=(z-k)/(z+k) , then Re (omega) =

If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1 , find the locus of z in the complex plane

Let z=x+i ydot Then find the locus of P(z) such that (1+ bar z )/z in Rdot

If z=x + yi and omega= (1-zi)/(z-i) show that |omega|=1 rArr z is purely real

If z= x + yi and omega = ((1- zi))/(z-i) , then |omega|=1 implies that in the complex plane

Let S = { z: x = x+ iy, y ge 0,|z-z_(0)| le 1} , where |z_(0)|= |z_(0) - omega|= |z_(0) - omega^(2)|, omega and omega^(2) are non-real cube roots of unity. Then

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)