Home
Class 11
MATHS
Prove the following (1- omega + omega...

Prove the following
`(1- omega + omega^(2)) (1 + omega- omega^(2)) (1 - omega- omega^(2))= 8`

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8)) …. to 2n factors = 2^(2n) where , ω is the cube root of unity.

Prove the following (a + b omega + c omega^(2))/(b + c omega + a omega^(2))= omega

Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

Prove the following (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) + (a + b omega + c omega^(2))/(b + c omega + a omega^(2)) = -1

Prove the following (1+ omega) (1+ omega^(2)) (1 + omega^(4)) (1 + omega^(8)) ….to 2n factors = 1

Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

Prove that (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)).... to 2^(n) factors = 2^(2n) .

If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega - omega^(2)) (1- omega + omega^(2))=4

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is