Home
Class 11
MATHS
Prove the following (1- omega + omega...

Prove the following
`(1- omega + omega^(2)) (1- omega^(2) + omega^(4)) (1- omega^(4) + omega^(8))` …. to 2n factors `= 2^(2n)` where , ω is the cube root of unity.

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Chapter Test|25 Videos
  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (E )|12 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Prove the following (1- omega + omega^(2)) (1 + omega- omega^(2)) (1 - omega- omega^(2))= 8

Prove the following (1+ omega) (1+ omega^(2)) (1 + omega^(4)) (1 + omega^(8)) ….to 2n factors = 1

Prove that (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)).... to 2^(n) factors = 2^(2n) .

If omega(ne1) is a cube root of unity, then (1-omega+omega^(2))(1-omega^(2)+omega^(4))(1-omega^(4)+omega^(8)) …upto 2n is factors, is

(2+omega+omega^2)^3+(1+omega-omega^2)^8-(1-3omega+omega^2)^4=1

If omega is complex cube root of unity (1-omega+ omega^2) (1-omega^2+omega^4)(1-omega^4+omega^8)(1-omega^8+omega^16)

The value of the determinant |(1,omega^(3),omega^(5)),(omega^(3),1,omega^(4)),(omega^(5),omega^(4),1)| , where omega is an imaginary cube root of unity, is

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If 1, omega and omega^(2) are the cube roots of unity evaluate (1-omega^(4)+omega^(8))(1-omega^(8)+omega^(16)) .

The value of the expression (1+1/omega)(1+1/omega^(2))+(2+1/omega)(2+1/omega^(2))+(3+1/omega^(2))+…………..+(n+1/omega)(n+1/omega^(2)) , where omega is an imaginary cube root of unity, is

ICSE-COMPLEX NUMBERS-Exercise (F )
  1. If omega is a cube root of unity, then omega^(3)= ……

    Text Solution

    |

  2. If 1, omega, omega^(2) are three cube roots of unity, prove that (1...

    Text Solution

    |

  3. If 1, omega, omega^(2) are three cube roots of unity, prove that (1...

    Text Solution

    |

  4. If 1, omega, omega^(2) are three cube roots of unity, prove that (1...

    Text Solution

    |

  5. If 1, omega, omega^(2) are three cube roots of unity, prove that (1...

    Text Solution

    |

  6. If 1, omega, omega^(2) are three cube roots of unity, prove that (1...

    Text Solution

    |

  7. If 1, omega, omega^(2) are three cube roots of unity, prove that (...

    Text Solution

    |

  8. If 1, omega, omega^(2) are three cube roots of unity, prove that (3...

    Text Solution

    |

  9. If 1, omega, omega^(2) are three cube roots of unity, prove that om...

    Text Solution

    |

  10. Prove that ((-1 + isqrt3)/(2))^(n) + ((-1-isqrt3)/(2))^(n) is equal to...

    Text Solution

    |

  11. If 1, omega, omega^(2) are the cube roots of unity, prove that omega^(...

    Text Solution

    |

  12. Prove the following (1- omega + omega^(2)) (1 + omega- omega^(2)) (...

    Text Solution

    |

  13. Prove the following (1+ omega) (1+ omega^(2)) (1 + omega^(4)) (1 + ...

    Text Solution

    |

  14. Prove the following (1- omega + omega^(2)) (1- omega^(2) + omega^(4...

    Text Solution

    |

  15. Prove the following (a + b omega + c omega^(2))/(b + c omega + a ome...

    Text Solution

    |

  16. Prove the following (a + b omega + c omega^(2))/(c + a omega + b ome...

    Text Solution

    |

  17. If omega is a cube root of unity and n is a positive integer which is ...

    Text Solution

    |

  18. Show that (x + omega y + omega^(2)z) (x + omega^(2)y + omega z) = x^(2...

    Text Solution

    |

  19. Show that x^(3) +y^(3) = (x + y) (omega x + omega^(2)y) (omega^(2)x +...

    Text Solution

    |

  20. If 1, omega, omega^(2) are cube roots of unity, prove that 1, omega, o...

    Text Solution

    |