Home
Class 11
MATHS
If z = x + yi, omega = (2-iz)/(2z-i) and...

If `z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1`, find the locus of z in the complex plane

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the locus of the complex number \( z = x + yi \) given that \( \omega = \frac{2 - iz}{2z - i} \) and \( |\omega| = 1 \). ### Step-by-Step Solution: 1. **Substituting \( z \)**: We start by substituting \( z = x + yi \) into the expression for \( \omega \): \[ \omega = \frac{2 - i(x + yi)}{2(x + yi) - i} \] Simplifying the numerator: \[ 2 - ix - y = 2 - ix - y \] So the numerator becomes: \[ 2 - ix - y = 2 - y - ix \] Now simplifying the denominator: \[ 2(x + yi) - i = 2x + 2yi - i = 2x + (2y - 1)i \] Thus, we have: \[ \omega = \frac{2 - y - ix}{2x + (2y - 1)i} \] 2. **Finding the modulus of \( \omega \)**: The modulus of \( \omega \) can be expressed as: \[ |\omega| = \frac{|2 - y - ix|}{|2x + (2y - 1)i|} \] Calculating the modulus of the numerator: \[ |2 - y - ix| = \sqrt{(2 - y)^2 + x^2} \] Calculating the modulus of the denominator: \[ |2x + (2y - 1)i| = \sqrt{(2x)^2 + (2y - 1)^2} \] Therefore, we have: \[ |\omega| = \frac{\sqrt{(2 - y)^2 + x^2}}{\sqrt{4x^2 + (2y - 1)^2}} \] 3. **Setting the modulus equal to 1**: Since \( |\omega| = 1 \), we set up the equation: \[ \frac{\sqrt{(2 - y)^2 + x^2}}{\sqrt{4x^2 + (2y - 1)^2}} = 1 \] Squaring both sides gives: \[ (2 - y)^2 + x^2 = 4x^2 + (2y - 1)^2 \] 4. **Expanding both sides**: Expanding the left-hand side: \[ (2 - y)^2 + x^2 = 4 - 4y + y^2 + x^2 \] Expanding the right-hand side: \[ 4x^2 + (2y - 1)^2 = 4x^2 + (4y^2 - 4y + 1) = 4x^2 + 4y^2 - 4y + 1 \] 5. **Setting the equation**: Now we have: \[ 4 - 4y + y^2 + x^2 = 4x^2 + 4y^2 - 4y + 1 \] Rearranging gives: \[ 4 - 1 + y^2 + x^2 - 4y^2 = 4x^2 \] Simplifying this leads to: \[ 3 - 3y^2 + x^2 - 4x^2 = 0 \] or: \[ 3 - 3y^2 - 3x^2 = 0 \] 6. **Final expression**: Dividing through by 3 gives: \[ x^2 + y^2 = 1 \] ### Conclusion: The locus of \( z \) in the complex plane is a circle centered at the origin with a radius of 1.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (F )|28 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If z= x + yi and omega = ((1- zi))/(z-i) , then |omega|=1 implies that in the complex plane

If omega = z//[z-(1//3)i] and |omega| = 1 , then find the locus of z.

If w=z/[z-(1/3)i] and |w|=1, then find the locus of z

If z=x + yi and omega= (1-zi)/(z-i) show that |omega|=1 rArr z is purely real

If z is a complex number satisfying the equation |z-(1+i)|^2=2 and omega=2/z , then the locus traced by 'omega' in the complex plane is

If z is a complex number satisfying the equation |z-(1+i)|^2=2 and omega=2/z , then the locus traced by 'omega' in the complex plane is

If z=x+iy and w=(1-iz)/(z-i) , then |w|=1 implies that in the complex plane (A) z lies on imaginary axis (B) z lies on real axis (C) z lies on unit circle (D) None of these

If z=x+i y and w=(1-i z)//(z-i) and |w| = 1 , then show that z is purely real.

If complex number z lies on the curve |z - (- 1+ i)| = 1 , then find the locus of the complex number w =(z+i)/(1-i), i =sqrt-1 .

If the imaginary part of (2z+1)//(i z+1) is -2, then find the locus of the point representing in the complex plane.

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If omega and omega^(2) are cube roots of unity, prove that (2- omega +...

    Text Solution

    |

  2. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  3. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  4. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  5. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  6. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  7. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  8. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  9. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  10. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  11. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  12. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  13. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  14. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  15. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  16. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |

  17. If 1, omega, omega^(2) are the three cube roots of unity, then simplif...

    Text Solution

    |

  18. Find the locus of a complex number z= x+yi, satisfying the relation |3...

    Text Solution

    |

  19. Find the modulus and argument of the complex number (2 + i)/(4i + (1+ ...

    Text Solution

    |

  20. If |z-3+ i|=4, then the locus of z is

    Text Solution

    |