Home
Class 11
MATHS
If 1, omega, omega^(2) are the three cub...

If `1, omega, omega^(2)` are the three cube roots of unity, then simplify: `(3 + 5omega + 3omega^(2))^(2) (1 + 2omega + omega^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((3 + 5\omega + 3\omega^2)^2 (1 + 2\omega + \omega^2)\), where \(1, \omega, \omega^2\) are the cube roots of unity, we can follow these steps: ### Step 1: Use the property of cube roots of unity Recall that the cube roots of unity satisfy the equation: \[ 1 + \omega + \omega^2 = 0 \] From this, we can express \(\omega^2\) in terms of \(\omega\): \[ \omega^2 = -1 - \omega \] ### Step 2: Simplify the first part \((3 + 5\omega + 3\omega^2)^2\) Substituting \(\omega^2\) into the expression: \[ 3 + 5\omega + 3\omega^2 = 3 + 5\omega + 3(-1 - \omega) = 3 + 5\omega - 3 - 3\omega = 2\omega \] Now we can square this: \[ (2\omega)^2 = 4\omega^2 \] ### Step 3: Simplify the second part \((1 + 2\omega + \omega^2)\) Using the same substitution for \(\omega^2\): \[ 1 + 2\omega + \omega^2 = 1 + 2\omega + (-1 - \omega) = 2\omega \] ### Step 4: Combine the results Now we can combine the results from Step 2 and Step 3: \[ (3 + 5\omega + 3\omega^2)^2 (1 + 2\omega + \omega^2) = (4\omega^2)(2\omega) = 8\omega^3 \] ### Step 5: Use the property of cube roots of unity again Since \(\omega^3 = 1\): \[ 8\omega^3 = 8 \cdot 1 = 8 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{8} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (F )|28 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

If 1, omega, omega^(2) are three cube roots of unity, prove that (3+ 5omega + 3omega^(2))^(6) = (3 + 5omega^(2) + 3omega)^(6)= 64

If 1, omega, omega^(2) are three cube roots of unity, prove that (1)/(1 + omega) + (1)/(1+ omega^(2))=1

Knowledge Check

  • If 1 , omega, omega^(2) are cube roots of unity then the value of (3 + 5omega+3omega^(2))^(3) is

    A
    6
    B
    8
    C
    12
    D
    16
  • Similar Questions

    Explore conceptually related problems

    If 1, omega, omega^(2) are three cube roots of unity, prove that (1+ omega- omega^(2))^(3)= (1- omega + omega^(2))^(3)= -8

    If 1,omega,omega^2 are the cube roots of unity, then /_\ is equal to.....

    If 1, omega, omega^(2) are cube roots of unity, prove that (x + y)^(2) + (x omega + y omega^(2))^(2) + (x omega^(2) + y omega)^(2)= 6xy

    If 1, omega, omega^(2) are three cube roots of unity, prove that (1- omega) (1- omega^(2))= 3

    If 1, omega, omega^(2) are the cube roots of unity, prove that (1 + omega)^(3)-(1 + omega^(2))^(3)=0

    If 1, omega, omega^(2) are three cube roots of unity, prove that (1 + omega - omega^(2)) (1- omega + omega^(2))=4

    If 1, omega, omega^(2) are three cube roots of unity, show that (a + omega b+ omega^(2)c) (a + omega^(2)b+ omega c)= a^(2) + b^(2) + c^(2)- ab- bc - ca