Home
Class 11
MATHS
Find the modulus and argument of the com...

Find the modulus and argument of the complex number `(2 + i)/(4i + (1+ i)^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the modulus and argument of the complex number \(\frac{2 + i}{4i + (1 + i)^2}\), we will follow these steps: ### Step 1: Simplify the Denominator First, we need to simplify the denominator \(4i + (1 + i)^2\). \[ (1 + i)^2 = 1^2 + 2 \cdot 1 \cdot i + i^2 = 1 + 2i - 1 = 2i \] Now substituting this back into the denominator: \[ 4i + (1 + i)^2 = 4i + 2i = 6i \] ### Step 2: Rewrite the Complex Number Now we can rewrite the complex number: \[ \frac{2 + i}{6i} \] ### Step 3: Separate into Real and Imaginary Parts We can separate the numerator: \[ \frac{2 + i}{6i} = \frac{2}{6i} + \frac{i}{6i} = \frac{2}{6i} + \frac{1}{6} \] To simplify \(\frac{2}{6i}\): \[ \frac{2}{6i} = \frac{2}{6} \cdot \frac{-i}{-i} = \frac{-2i}{6} = -\frac{1}{3}i \] So we have: \[ -\frac{1}{3}i + \frac{1}{6} = \frac{1}{6} - \frac{1}{3}i \] ### Step 4: Identify Real and Imaginary Parts Now, we can identify the real and imaginary parts: \[ z = \frac{1}{6} - \frac{1}{3}i \] Here, \(a = \frac{1}{6}\) and \(b = -\frac{1}{3}\). ### Step 5: Calculate the Modulus The modulus \(r\) of a complex number \(z = a + bi\) is given by: \[ r = \sqrt{a^2 + b^2} \] Calculating: \[ r = \sqrt{\left(\frac{1}{6}\right)^2 + \left(-\frac{1}{3}\right)^2} = \sqrt{\frac{1}{36} + \frac{1}{9}} = \sqrt{\frac{1}{36} + \frac{4}{36}} = \sqrt{\frac{5}{36}} = \frac{\sqrt{5}}{6} \] ### Step 6: Calculate the Argument The argument \(\theta\) can be found using: \[ \tan \theta = \frac{b}{a} = \frac{-\frac{1}{3}}{\frac{1}{6}} = -2 \] Now we find \(\theta\): \[ \theta = \tan^{-1}(-2) \] Since \(a > 0\) and \(b < 0\), the complex number lies in the fourth quadrant. Thus, the angle will be negative: \[ \theta \approx -63.43^\circ \] ### Final Result The modulus and argument of the complex number \(\frac{2 + i}{4i + (1 + i)^2}\) are: \[ \text{Modulus} = \frac{\sqrt{5}}{6}, \quad \text{Argument} = -63.43^\circ \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    ICSE|Exercise Exercise (F )|28 Videos
  • COMPLEX NUMBER

    ICSE|Exercise MULTIPLE CHOICE QUESTIONS |34 Videos
  • COMPOUND AND MULTIPLE ANGLES

    ICSE|Exercise CHEPTER TEST |23 Videos

Similar Questions

Explore conceptually related problems

Find the modulus and argument of the complex number (1+2i)/(1-3i) .

Find the modulus and argument of -4i.

Find the modulus and argument of the following complex number: (1+i)/(1-i)

Find the modulus and argument of the complex numbers : (i) (1+i)/(1-i) (ii) 1/(1+i)

Find the modulus and argument of the following complex number (1+2i)/(1-3i)

Find the modulus and argument of the complex number 3sqrt2 -3sqrt2i .

The argument of the complex number (1 +i)^(4) is

Find the modulus and the arguments of the complex number z=-sqrt(3)+i

Find the modulus and the arguments of the complex number z = - 1 - isqrt(3)

Find the modulus and argument of the following complex number: 1/(1+i)

ICSE-COMPLEX NUMBERS-Chapter Test
  1. If z(1), z(2) in C (set of complex numbers), prove that |z(1) + z(2)| ...

    Text Solution

    |

  2. If z = x + yi, omega = (2-iz)/(2z-i) and |omega|=1, find the locus of ...

    Text Solution

    |

  3. Simplify: (1- 3omega + omega^(2)) (1 + omega- 3omega^(2))

    Text Solution

    |

  4. Find the locus of z satisfying |(z-3)/(z+1)|=3 in the complex plane.

    Text Solution

    |

  5. Given that (2 sqrt3 cos 30^(@) - 2i sin 30^(@))/(sqrt2 (cos 45^(@) + i...

    Text Solution

    |

  6. Simplify : (1- omega) (1- omega^(2)) (1- omega^(4)) (1- omega^(8))

    Text Solution

    |

  7. Find the locus of a complex number z= x + yi, satisfying the relation ...

    Text Solution

    |

  8. Find the real values of x and y satisfying the equality (x-2 + (y-3)i)...

    Text Solution

    |

  9. If i= (sqrt-1), prove that following (x+1+i) (x+ 1-i) (x-1-i) (x-1+ i)...

    Text Solution

    |

  10. If z= x + yi and |2z + 1| = |z- 2i|, show that 3(x^(2) + y^(2)) + 4(x-...

    Text Solution

    |

  11. Find the amplitude of the complex number "sin" (6pi)/(5) + i (1- "cos"...

    Text Solution

    |

  12. Express (1- 2i)/(2+i) + (3+i)/(2-i) in the form a + bi

    Text Solution

    |

  13. Find the value of x and y given that (x + yi) (2-3i)=4+i

    Text Solution

    |

  14. If the ratio (z-i)/(z-1) is purely imaginary, prove that the point z l...

    Text Solution

    |

  15. If (-2 + sqrt-3) (-3 + 2 sqrt-3) = a + bi, find the real numbers a and...

    Text Solution

    |

  16. If 1, omega, omega^(2) are the three cube roots of unity, then simplif...

    Text Solution

    |

  17. Find the locus of a complex number z= x+yi, satisfying the relation |3...

    Text Solution

    |

  18. Find the modulus and argument of the complex number (2 + i)/(4i + (1+ ...

    Text Solution

    |

  19. If |z-3+ i|=4, then the locus of z is

    Text Solution

    |

  20. The locus of the point z is the Argand plane for which |z +1|^(2) + |z...

    Text Solution

    |