Home
Class 11
MATHS
If ""^(n)C(3) + ""^(n)C4 gt ""^(n+1) C3...

If `""^(n)C_(3) + ""^(n)C_4 gt ""^(n+1) C_3 , ` then.

A

` n gt 6`

B

` n gt 7 `

C

` n lt 6`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \binom{n}{3} + \binom{n}{4} > \binom{n+1}{3} \), we will follow these steps: ### Step 1: Rewrite the left-hand side We start with the left-hand side of the inequality: \[ \binom{n}{3} + \binom{n}{4} \] Using the identity \( \binom{n}{k} + \binom{n}{k+1} = \binom{n+1}{k+1} \), we can rewrite this as: \[ \binom{n+1}{4} \] ### Step 2: Rewrite the right-hand side Now, we look at the right-hand side: \[ \binom{n+1}{3} \] ### Step 3: Set up the inequality We now have: \[ \binom{n+1}{4} > \binom{n+1}{3} \] ### Step 4: Express both sides using factorials Using the definition of combinations, we can express both sides: \[ \frac{(n+1)!}{4!(n+1-4)!} > \frac{(n+1)!}{3!(n+1-3)!} \] This simplifies to: \[ \frac{(n+1)!}{4!(n-3)!} > \frac{(n+1)!}{3!(n-2)!} \] ### Step 5: Cancel the common terms Since \( (n+1)! \) appears in both sides, we can cancel it out (assuming \( n+1 \neq 0 \)): \[ \frac{1}{4!(n-3)!} > \frac{1}{3!(n-2)!} \] ### Step 6: Cross-multiply Cross-multiplying gives us: \[ 3!(n-2)! > 4!(n-3)! \] Substituting \( 3! = 6 \) and \( 4! = 24 \): \[ 6(n-2)! > 24(n-3)! \] ### Step 7: Simplify the inequality We can simplify \( (n-2)! \) and \( (n-3)! \): \[ 6(n-2)(n-3)! > 24(n-3)! \] Dividing both sides by \( (n-3)! \) (assuming \( n-3 \neq 0 \)): \[ 6(n-2) > 24 \] ### Step 8: Solve for \( n \) Dividing both sides by 6: \[ n-2 > 4 \] Thus: \[ n > 6 \] ### Conclusion The solution to the inequality is \( n > 6 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

""^(n-1)C_3+""^(n-1)C_4 gt ""^(n)C_3 if

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=

Determine n if (i) ""^(2n)C_(3) : ""^(n)C_(3) = 12:1 (ii) ""^(2n)C_(3): ""^(n)C_(3)= 11:1

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

Prove that .^(n-1)C_(3)+.^(n-1)C_(4) gt .^(n)C_(3) if n gt 7 .

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is

Prove that .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "…." + n xx .^(n)C_(n) = n2^(n-1) . Hence, prove that .^(n)C_(1).(.^(n)C_(2))^(2).(.^(n)C_(3))^(3)"......."(.^(n)C_(n))^(n) le ((2^(n))/(n+1))^(.^(n+1)C_(2)) AA n in N .

The inequality .^(n+1)C_(6)-.^(n)C_(4) gt .^(n)C_(5) holds true for all n greater than ________.

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.