Home
Class 11
MATHS
Find n if : ""^(n)P2 = 30...

Find n if :
` ""^(n)P_2 = 30`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) such that \( {}^nP_2 = 30 \). ### Step 1: Understand the formula for permutations The formula for permutations of \( n \) items taken \( r \) at a time is given by: \[ {}^nP_r = \frac{n!}{(n-r)!} \] In our case, \( r = 2 \), so we have: \[ {}^nP_2 = \frac{n!}{(n-2)!} \] ### Step 2: Set up the equation From the problem, we know: \[ {}^nP_2 = 30 \] Thus, we can write: \[ \frac{n!}{(n-2)!} = 30 \] ### Step 3: Simplify the equation We can simplify \( \frac{n!}{(n-2)!} \) as follows: \[ \frac{n!}{(n-2)!} = n \times (n-1) \] So, we rewrite our equation: \[ n(n-1) = 30 \] ### Step 4: Rearrange the equation Now, we can rearrange the equation: \[ n^2 - n - 30 = 0 \] ### Step 5: Factor the quadratic equation Next, we need to factor the quadratic equation: \[ n^2 - n - 30 = (n - 6)(n + 5) = 0 \] ### Step 6: Solve for \( n \) Setting each factor to zero gives us: \[ n - 6 = 0 \quad \Rightarrow \quad n = 6 \] \[ n + 5 = 0 \quad \Rightarrow \quad n = -5 \] Since \( n \) must be a non-negative integer, we discard \( n = -5 \). ### Final Answer Thus, the value of \( n \) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

Find n If : ""^(n)P_4 : "" ^(n-1)P_3 = 9: 1

Find n if : P(2n, 3) = 100 P(n,2)

Find n if : P(n, 6 ) = 3( P(n,5)

Find n, if ""^(n)P_(5)=42 ""^(n)P_(3), n ge 5

Find n if ""^(n-1)P_(3): ""^(n)P_(4) = 1:9 .

Find n if : 2P( n,3) = P(n+1,3)

Find the value of n if ""^(n) P_(13) : ""^(n+1) P_(12) =(3)/(4)

If .^(m+n)P_(2)=90 and .^(m-n)P_(2)=30 , find the value of m and .