Home
Class 11
MATHS
Find n If : ""^(n)P4 : "" ^(n-1)P3 = ...

Find n If :
` ""^(n)P_4 : "" ^(n-1)P_3 = 9: 1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given the ratio of permutations: \[ \frac{nP_4}{(n-1)P_3} = \frac{9}{1} \] ### Step 1: Write the permutation formulas The formula for permutations is given by: \[ nP_r = \frac{n!}{(n-r)!} \] So, we can express \( nP_4 \) and \( (n-1)P_3 \) using this formula: \[ nP_4 = \frac{n!}{(n-4)!} \] \[ (n-1)P_3 = \frac{(n-1)!}{((n-1)-3)!} = \frac{(n-1)!}{(n-4)!} \] ### Step 2: Substitute the formulas into the ratio Now substitute these expressions into the ratio: \[ \frac{nP_4}{(n-1)P_3} = \frac{\frac{n!}{(n-4)!}}{\frac{(n-1)!}{(n-4)!}} \] ### Step 3: Simplify the ratio The \( (n-4)! \) cancels out: \[ \frac{n!}{(n-1)!} \] Using the property of factorials, we know that: \[ n! = n \cdot (n-1)! \] So we can rewrite the ratio as: \[ \frac{n \cdot (n-1)!}{(n-1)!} = n \] ### Step 4: Set up the equation Now we have: \[ n = \frac{9}{1} = 9 \] ### Step 5: Conclusion Thus, the value of \( n \) is: \[ \boxed{9} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

Find n if ""^(n-1)P_(3): ""^(n)P_(4) = 1:9 .

Find n, if ""^(n)P_(5)=42 ""^(n)P_(3), n ge 5

If .^(n-1)P_3 :^(n+1)P_3 = 5 : 12, find n .

Find the value of n if ""^(n) P_(13) : ""^(n+1) P_(12) =(3)/(4)

If "^nP_4: ^(n+1)P_4=3:4 , find n.

Find n if : P(2n, 3) = 100 P(n,2)

Find n if : P(n, 6 ) = 3( P(n,5)

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.