Home
Class 11
MATHS
Find n if : "" ^(2n)P(n+1) : ""^(2n-2...

Find n if :
` "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given the equation: \[ \frac{(2n)P_{n+1}}{(2n-2)P_n} = \frac{56}{3} \] ### Step-by-step Solution: 1. **Write the Permutation Formula**: The permutation \( nPk \) is given by the formula: \[ nPk = \frac{n!}{(n-k)!} \] Therefore, we can express \( (2n)P_{n+1} \) and \( (2n-2)P_n \) using this formula. 2. **Express the Permutations**: \[ (2n)P_{n+1} = \frac{(2n)!}{(2n-(n+1))!} = \frac{(2n)!}{(n-1)!} \] \[ (2n-2)P_n = \frac{(2n-2)!}{(2n-2-n)!} = \frac{(2n-2)!}{(n-2)!} \] 3. **Substituting into the Equation**: Substitute these expressions back into the original equation: \[ \frac{\frac{(2n)!}{(n-1)!}}{\frac{(2n-2)!}{(n-2)!}} = \frac{56}{3} \] 4. **Simplifying the Left Side**: This simplifies to: \[ \frac{(2n)! \cdot (n-2)!}{(n-1)! \cdot (2n-2)!} \] Now, we can use the identity \( (2n)! = (2n)(2n-1)(2n-2)! \): \[ \frac{(2n)(2n-1)(2n-2)! \cdot (n-2)!}{(n-1)! \cdot (2n-2)!} = \frac{(2n)(2n-1)(n-2)!}{(n-1)!} \] 5. **Cancelling Factorials**: The \( (2n-2)! \) cancels out: \[ \frac{(2n)(2n-1)}{(n-1)} = \frac{56}{3} \] 6. **Cross-Multiplying**: Cross-multiply to eliminate the fraction: \[ 3(2n)(2n-1) = 56(n-1) \] Expanding both sides gives: \[ 12n^2 - 6n = 56n - 56 \] 7. **Rearranging the Equation**: Bring all terms to one side: \[ 12n^2 - 62n + 56 = 0 \] 8. **Dividing the Equation**: Divide the entire equation by 2 for simplification: \[ 6n^2 - 31n + 28 = 0 \] 9. **Factoring the Quadratic**: We need to factor this quadratic. We look for two numbers that multiply to \( 6 \times 28 = 168 \) and add to \( -31 \). The numbers are \( -24 \) and \( -7 \): \[ 6n^2 - 24n - 7n + 28 = 0 \] Grouping gives: \[ (6n - 7)(n - 4) = 0 \] 10. **Finding the Roots**: Setting each factor to zero gives: \[ 6n - 7 = 0 \quad \Rightarrow \quad n = \frac{7}{6} \quad (\text{not valid since } n \text{ must be an integer}) \] \[ n - 4 = 0 \quad \Rightarrow \quad n = 4 \] ### Final Answer: Thus, the value of \( n \) is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

Find n if : ""^(n)P_2 = 30

Find n if ""^(n-1)P_(3): ""^(n)P_(4) = 1:9 .

Find n if : 2P( n,3) = P(n+1,3)

Find n, if ""^(n)P_(5)=42 ""^(n)P_(3), n ge 5

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.

Find n if : P(n, 6 ) = 3( P(n,5)

Find n if : P(2n, 3) = 100 P(n,2)

If 2n+1P(n-1) : (2n-1)Pn =3:5,find n

Show that ""^(n)P_(n)=2""^(n)P_(n-2)