Home
Class 11
MATHS
Find n if : ""^(2n+1) P(n-1) : ""^(2n...

Find n if :
` ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given the equation: \[ \frac{(2n+1) P (n-1)}{(2n-1) P n} = \frac{3}{5} \] ### Step 1: Write the Permutation Formula Recall the permutation formula: \[ nPr = \frac{n!}{(n-r)!} \] ### Step 2: Apply the Permutation Formula Using the permutation formula, we can express the left side of the equation: \[ (2n+1) P (n-1) = \frac{(2n+1)!}{(2n+1 - (n-1))!} = \frac{(2n+1)!}{(n+2)!} \] \[ (2n-1) P n = \frac{(2n-1)!}{(2n-1 - n)!} = \frac{(2n-1)!}{(n-1)!} \] ### Step 3: Substitute into the Equation Substituting these back into the equation gives us: \[ \frac{\frac{(2n+1)!}{(n+2)!}}{\frac{(2n-1)!}{(n-1)!}} = \frac{3}{5} \] ### Step 4: Simplify the Left Side This simplifies to: \[ \frac{(2n+1)! \cdot (n-1)!}{(2n-1)! \cdot (n+2)!} = \frac{3}{5} \] ### Step 5: Factorial Simplification We can express \( (2n+1)! \) in terms of \( (2n-1)! \): \[ (2n+1)! = (2n+1)(2n)(2n-1)! \] Thus, we have: \[ \frac{(2n+1)(2n)(n-1)!}{(2n-1)!(n+2)!} = \frac{3}{5} \] ### Step 6: Further Simplification This can be rewritten as: \[ \frac{(2n+1)(2n)}{(n+2)(n+1)} = \frac{3}{5} \] ### Step 7: Cross-Multiply Cross-multiplying gives: \[ 5(2n+1)(2n) = 3(n+2)(n+1) \] ### Step 8: Expand Both Sides Expanding both sides: \[ 5(4n^2 + 2n) = 3(n^2 + 3n + 2) \] \[ 20n^2 + 10n = 3n^2 + 9n + 6 \] ### Step 9: Rearranging the Equation Rearranging gives: \[ 20n^2 - 3n^2 + 10n - 9n - 6 = 0 \] \[ 17n^2 + n - 6 = 0 \] ### Step 10: Factor the Quadratic Now we need to factor or use the quadratic formula to solve for \( n \): \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Where \( a = 17, b = 1, c = -6 \). ### Step 11: Calculate the Discriminant Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4(17)(-6) = 1 + 408 = 409 \] ### Step 12: Solve for \( n \) Now substituting back into the quadratic formula: \[ n = \frac{-1 \pm \sqrt{409}}{34} \] ### Step 13: Finding the Value of \( n \) We can approximate \( \sqrt{409} \) to find the values of \( n \). The possible values will be: 1. \( n_1 = \frac{-1 + \sqrt{409}}{34} \) 2. \( n_2 = \frac{-1 - \sqrt{409}}{34} \) (not valid since \( n \) must be positive) ### Conclusion The valid solution for \( n \) is: \[ n \approx \frac{-1 + 20.223}{34} \approx 0.57 \text{ (not an integer)} \] Thus, we will need to check for integer solutions or further evaluate the quadratic.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

If 2n+1P(n-1) : (2n-1)Pn =3:5,find n

Find n if : 2P( n,3) = P(n+1,3)

Find n if : P(2n, 3) = 100 P(n,2)

Find n If : ""^(n)P_4 : "" ^(n-1)P_3 = 9: 1

If ""^(2n-1)P_(n): ""^(2n+1)P_(n-1)=22:7 , find n.

Find n if ""^(n-1)P_(3): ""^(n)P_(4) = 1:9 .

Find n if : P(n, 6 ) = 3( P(n,5)

Find the value of n if ""^(n) P_(13) : ""^(n+1) P_(12) =(3)/(4)

Find n, if ""^(n)P_(5)=42 ""^(n)P_(3), n ge 5