Home
Class 11
MATHS
Find n if : P(2n, 3) = 100 P(n,2)...

Find n if :
P(2n, 3) = 100 P(n,2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( P(2n, 3) = 100 P(n, 2) \), we will use the formula for permutations, which is given by: \[ P(n, r) = \frac{n!}{(n-r)!} \] ### Step 1: Write the permutation expressions Using the formula for permutations, we can express both sides of the equation: \[ P(2n, 3) = \frac{(2n)!}{(2n-3)!} \] \[ P(n, 2) = \frac{n!}{(n-2)!} \] ### Step 2: Substitute the expressions into the equation Now substituting these expressions into the original equation, we have: \[ \frac{(2n)!}{(2n-3)!} = 100 \cdot \frac{n!}{(n-2)!} \] ### Step 3: Simplify both sides The left-hand side simplifies to: \[ (2n)(2n-1)(2n-2) \] So the equation becomes: \[ (2n)(2n-1)(2n-2) = 100 \cdot (n)(n-1) \] ### Step 4: Expand both sides Expanding both sides gives: \[ (2n)(2n-1)(2n-2) = 8n^3 - 12n^2 + 4n \] \[ 100(n)(n-1) = 100(n^2 - n) = 100n^2 - 100n \] ### Step 5: Set the equation to zero Now we set the equation to zero: \[ 8n^3 - 12n^2 + 4n - 100n^2 + 100n = 0 \] Combining like terms yields: \[ 8n^3 - 112n^2 + 104n = 0 \] ### Step 6: Factor out common terms Factoring out \( 8n \): \[ 8n(n^2 - 14n + 13) = 0 \] ### Step 7: Solve the quadratic equation Now we solve the quadratic equation \( n^2 - 14n + 13 = 0 \) using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] Here \( a = 1, b = -14, c = 13 \): \[ n = \frac{14 \pm \sqrt{(-14)^2 - 4 \cdot 1 \cdot 13}}{2 \cdot 1} \] \[ = \frac{14 \pm \sqrt{196 - 52}}{2} \] \[ = \frac{14 \pm \sqrt{144}}{2} \] \[ = \frac{14 \pm 12}{2} \] This gives us two potential solutions: \[ n = \frac{26}{2} = 13 \quad \text{and} \quad n = \frac{2}{2} = 1 \] ### Step 8: Verify the solutions Since \( n \) must be a positive integer, we check both values in the context of the problem. Both values are valid, but we were asked for \( n \) in the context of the original equation. ### Final Answer Thus, the value of \( n \) is: \[ \boxed{13} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find n if : P(n, 6 ) = 3( P(n,5)

Find n if : 2P( n,3) = P(n+1,3)

Find n if : ""^(n)P_2 = 30

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

Find n If : ""^(n)P_4 : "" ^(n-1)P_3 = 9: 1

Prove that : P(n,n)= 2P (n,n -2)

Find n, if ""^(n)P_(5)=42 ""^(n)P_(3), n ge 5

Find n if ""^(n-1)P_(3): ""^(n)P_(4) = 1:9 .

If P(n ,4)=20 x P(n ,2),find n.