Home
Class 11
MATHS
Find n if : P(n, 6 ) = 3( P(n,5)...

Find n if :
` P(n, 6 ) = 3( P(n,5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( P(n, 6) = 3 \cdot P(n, 5) \), we will follow these steps: ### Step 1: Write the expression for permutations We start with the given equation: \[ P(n, 6) = 3 \cdot P(n, 5) \] ### Step 2: Use the formula for permutations The formula for permutations \( P(n, r) \) is given by: \[ P(n, r) = \frac{n!}{(n - r)!} \] Using this, we can rewrite both sides of the equation: \[ \frac{n!}{(n - 6)!} = 3 \cdot \frac{n!}{(n - 5)!} \] ### Step 3: Simplify the equation Now, we can cancel \( n! \) from both sides (assuming \( n! \neq 0 \)): \[ \frac{1}{(n - 6)!} = 3 \cdot \frac{1}{(n - 5)!} \] This simplifies to: \[ \frac{1}{(n - 6)!} = \frac{3}{(n - 5)!} \] ### Step 4: Express \( (n - 5)! \) in terms of \( (n - 6)! \) Recall that: \[ (n - 5)! = (n - 5) \cdot (n - 6)! \] Substituting this into our equation gives: \[ \frac{1}{(n - 6)!} = \frac{3}{(n - 5) \cdot (n - 6)!} \] ### Step 5: Cancel \( (n - 6)! \) from both sides Assuming \( (n - 6)! \neq 0 \), we can cancel it: \[ 1 = \frac{3}{n - 5} \] ### Step 6: Solve for \( n \) Now, we can solve for \( n \): \[ n - 5 = 3 \implies n = 3 + 5 = 8 \] ### Final Answer Thus, the value of \( n \) is: \[ \boxed{8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find n if : P(2n, 3) = 100 P(n,2)

Find n if : 2P( n,3) = P(n+1,3)

Find n if : ""^(n)P_2 = 30

If 5 P(n, 4)=6 P(n ,3) n?

If P(n,6) = 30. P(n,4) then n = ?

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

Find n If : ""^(n)P_4 : "" ^(n-1)P_3 = 9: 1

Prove that P(n,n) = P(n,n-1)

If P(n ,4)=20 x P(n ,2),find n.