Home
Class 11
MATHS
Find n if : 2P( n,3) = P(n+1,3)...

Find n if :
` 2P( n,3) = P(n+1,3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2P(n, 3) = P(n+1, 3) \), we will follow these steps: ### Step 1: Write the permutation formulas The permutation formula is given by: \[ P(n, r) = \frac{n!}{(n-r)!} \] Thus, we can express \( P(n, 3) \) and \( P(n+1, 3) \) as follows: \[ P(n, 3) = \frac{n!}{(n-3)!} \] \[ P(n+1, 3) = \frac{(n+1)!}{(n+1-3)!} = \frac{(n+1)!}{(n-2)!} \] ### Step 2: Substitute the permutations into the equation Now substitute these expressions into the original equation: \[ 2 \cdot \frac{n!}{(n-3)!} = \frac{(n+1)!}{(n-2)!} \] ### Step 3: Simplify the equation We can simplify \( (n+1)! \) as follows: \[ (n+1)! = (n+1) \cdot n! \] So the equation becomes: \[ 2 \cdot \frac{n!}{(n-3)!} = \frac{(n+1) \cdot n!}{(n-2)!} \] ### Step 4: Cancel \( n! \) from both sides Assuming \( n! \neq 0 \) (which is valid for \( n \geq 3 \)), we can cancel \( n! \): \[ 2 \cdot \frac{1}{(n-3)!} = \frac{(n+1)}{(n-2)!} \] ### Step 5: Rewrite \( (n-2)! \) in terms of \( (n-3)! \) We know that: \[ (n-2)! = (n-2)(n-3)! \] Substituting this into the equation gives: \[ 2 \cdot \frac{1}{(n-3)!} = \frac{(n+1)}{(n-2)(n-3)!} \] ### Step 6: Cancel \( (n-3)! \) from both sides Now we can cancel \( (n-3)! \) from both sides: \[ 2 = \frac{(n+1)}{(n-2)} \] ### Step 7: Cross-multiply to solve for \( n \) Cross-multiplying gives: \[ 2(n-2) = n + 1 \] Expanding this results in: \[ 2n - 4 = n + 1 \] ### Step 8: Rearrange the equation Rearranging gives: \[ 2n - n = 4 + 1 \] \[ n = 5 \] ### Final Answer Thus, the value of \( n \) is: \[ \boxed{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find n if : P(2n, 3) = 100 P(n,2)

Find n if : P(n, 6 ) = 3( P(n,5)

If 5 P(n, 4)=6 P(n ,3) n?

Find n if : ""^(2n+1) P_(n-1) : ""^(2n-1) P_n = 3: 5

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

Find n If : ""^(n)P_4 : "" ^(n-1)P_3 = 9: 1

If P(n ,5): P(n ,3)=2:1 find n

Find the value of n if ""^(n) P_(13) : ""^(n+1) P_(12) =(3)/(4)

If P(n ,4)=18xxP(n ,3), find n

If P(n ,4)=20 x P(n ,2),find n.