Home
Class 11
MATHS
Prove that If (1)/(9!) +(1)/( 10!) =(...

Prove that
If ` (1)/(9!) +(1)/( 10!) =(x)/( 11!) ,` Find x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!} \) and find the value of \( x \), we can follow these steps: ### Step 1: Write the equation We start with the equation: \[ \frac{1}{9!} + \frac{1}{10!} = \frac{x}{11!} \] ### Step 2: Find a common denominator The common denominator for \( 9! \) and \( 10! \) is \( 10! \). We can rewrite \( \frac{1}{9!} \) as: \[ \frac{1}{9!} = \frac{10}{10!} \] Thus, we can rewrite the left-hand side: \[ \frac{10}{10!} + \frac{1}{10!} = \frac{10 + 1}{10!} = \frac{11}{10!} \] ### Step 3: Substitute back into the equation Now we substitute this back into the original equation: \[ \frac{11}{10!} = \frac{x}{11!} \] ### Step 4: Express \( 11! \) in terms of \( 10! \) Recall that \( 11! = 11 \times 10! \). We can substitute this into the equation: \[ \frac{11}{10!} = \frac{x}{11 \times 10!} \] ### Step 5: Cancel \( 10! \) from both sides Since \( 10! \) is present in both denominators, we can cancel it: \[ 11 = \frac{x}{11} \] ### Step 6: Solve for \( x \) To find \( x \), we multiply both sides by \( 11 \): \[ x = 11 \times 11 = 121 \] ### Conclusion Thus, the value of \( x \) is: \[ \boxed{121} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: 1/(9!)+1/(10 !)+1/(11 !)=(122)/(11 !)

If 1/(9!)+1/(10 !)=x/(11 !) , find xdot

If 1/(8!)+1/(9!)=x/(10 !), find x

Find the value of n if (n)/(11!) = (1)/(9!) +(1)/(10!) .

Prove that . (sin ((1)/(10))/((1)/(10)))gt ((sin ((1)/(9)))/((1)/(9))).

If 4^(1+x)+4^(1-x)=10 , find x.

If cos (2 sin^(-1) x) = (1)/(9) , then find the value of x

Prove that : sin^(-1)x+cos^(-1)x=pi/2 , if x in [-1,1]

Let f(x)=(9^(x))/(9^(x)+3) If g(x)=int((1)/(11)+(2)/(11)+....+(10)/(11))dx , then

If 3x + (1)/(3x) = 3 , find : (i) 9x^(2) + (1)/(9x^2)