Home
Class 11
MATHS
Solve for n : (n+1) ! = 56 (n-1) !...

Solve for n :
` (n+1) ! = 56 (n-1) ! `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( (n+1)! = 56(n-1)! \), we can follow these steps: ### Step 1: Rewrite the factorials We know that: \[ (n+1)! = (n+1) \cdot n \cdot (n-1)! \] Substituting this into the equation gives: \[ (n+1) \cdot n \cdot (n-1)! = 56(n-1)! \] ### Step 2: Cancel out the common factorial Since \( (n-1)! \) appears on both sides of the equation, we can cancel it out (assuming \( n \neq 1 \)): \[ (n+1) \cdot n = 56 \] ### Step 3: Expand the equation Expanding the left side, we have: \[ n^2 + n = 56 \] ### Step 4: Rearrange the equation Rearranging gives us a standard quadratic equation: \[ n^2 + n - 56 = 0 \] ### Step 5: Factor the quadratic equation To factor the quadratic, we look for two numbers that multiply to \(-56\) and add to \(1\). The numbers \(8\) and \(-7\) fit: \[ (n + 8)(n - 7) = 0 \] ### Step 6: Solve for \(n\) Setting each factor to zero gives us: \[ n + 8 = 0 \quad \Rightarrow \quad n = -8 \quad (\text{not valid since } n \text{ must be a non-negative integer}) \] \[ n - 7 = 0 \quad \Rightarrow \quad n = 7 \] ### Final Answer Thus, the solution is: \[ n = 7 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of 'n' if (n+4) ! = 56 (n+2) ! .

Find the value of n if: 2n! n! =(n+1)(n-1)(!(2n-1)!

If (n+3)! =56[(n+1)! ] find n

Prove that: (i) (n!)/(r!) = n(n-1) (n-2)......(r+1) (ii) (n-r+1). (n!)/((n-r+1)!) = (n!)/((n-r)!)

Find n if : "" ^(2n)P_(n+1) : ""^(2n-2) P_n = 56 : 3

Calculate dispersive power of a transparent material given : n_v = 1.56 , n_r = 1.54 , n_y = 1.55

For each n in N, n(n+1) (2n+1) is divisible by

If n is a non zero rational number then show that 1 + n/2 + (n (n - 1))/(2.4) + (n(n-1)(n - 2))/(2.4.6) + ….. = 1 + n/3 + (n (n + 1))/(3.6) + (n (n + 1) (n + 2))/(3.6.9) + ….

If a 1 , a 2 , a 3 , , a 2 n + 1 are in A.P., then a 2 n + 1 − a 1 a 2 n + 1 + a 1 + a 2 n − a 2 a 2 n + a 2 + + a n + 2 − a n a n + 2 + a n is equal to a. n ( n + 1 ) 2 × a 2 − a 1 a n + 1 b. n ( n + 1 ) 2 c. ( n + 1 ) ( a 2 − a 1 ) d. none of these

The value of 1/{n!} +1/{(n+1)!} +1/{(n+2)!} = ______.