Home
Class 11
MATHS
Find the value of : ""^(10)C4...

Find the value of :
` ""^(10)C_4`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \binom{10}{4} \), we will use the formula for combinations: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] In this case, \( n = 10 \) and \( r = 4 \). Therefore, we can substitute these values into the formula: \[ \binom{10}{4} = \frac{10!}{4!(10-4)!} = \frac{10!}{4! \cdot 6!} \] Next, we can express \( 10! \) in a way that allows us to cancel \( 6! \): \[ 10! = 10 \times 9 \times 8 \times 7 \times 6! \] Now substituting this back into our equation gives: \[ \binom{10}{4} = \frac{10 \times 9 \times 8 \times 7 \times 6!}{4! \cdot 6!} \] We can cancel \( 6! \) from the numerator and the denominator: \[ \binom{10}{4} = \frac{10 \times 9 \times 8 \times 7}{4!} \] Next, we need to calculate \( 4! \): \[ 4! = 4 \times 3 \times 2 \times 1 = 24 \] Now we can substitute this value back into our equation: \[ \binom{10}{4} = \frac{10 \times 9 \times 8 \times 7}{24} \] Calculating the numerator: \[ 10 \times 9 = 90 \] \[ 90 \times 8 = 720 \] \[ 720 \times 7 = 5040 \] Now we have: \[ \binom{10}{4} = \frac{5040}{24} \] Finally, we perform the division: \[ \frac{5040}{24} = 210 \] Thus, the value of \( \binom{10}{4} \) is: \[ \boxed{210} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(10)=""^(n)C_(13) , then find the value of ""^(n)C_(2)

Find the value of ""^(47)C_4+ underset (r=1) overset( 5) sum ""^(52-r)C_3

Find the value of : 10% of 250

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

Find the values of A,B and C

Find the value of 4C_1 - 2C_2

Find the value of 5C_3 + 4C_2

Find the value of ^(4n)C_0+^(4n)C_4+^(4n)C_8+….+^(4n)C_(4n)

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

If ""^(n)C_(10) = ""^(n) C _ (14), find the value of ""^(n) C_(20) and ""^(25)C_n .