Home
Class 11
MATHS
Evaluate C(8,5)...

Evaluate
` C(8,5)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( C(8, 5) \), we will use the formula for combinations, which is given by: \[ C(n, r) = \frac{n!}{r!(n - r)!} \] ### Step 1: Identify the values of \( n \) and \( r \) In this case, we have: - \( n = 8 \) - \( r = 5 \) ### Step 2: Substitute the values into the combination formula Now, substituting the values into the formula: \[ C(8, 5) = \frac{8!}{5!(8 - 5)!} \] ### Step 3: Simplify the expression Calculate \( 8 - 5 \): \[ 8 - 5 = 3 \] So, we can rewrite the expression as: \[ C(8, 5) = \frac{8!}{5! \cdot 3!} \] ### Step 4: Expand the factorials Now, we can expand the factorials: \[ 8! = 8 \times 7 \times 6 \times 5! \] Thus, substituting this back into our equation gives us: \[ C(8, 5) = \frac{8 \times 7 \times 6 \times 5!}{5! \cdot 3!} \] ### Step 5: Cancel out \( 5! \) The \( 5! \) in the numerator and denominator cancels out: \[ C(8, 5) = \frac{8 \times 7 \times 6}{3!} \] ### Step 6: Calculate \( 3! \) Now, calculate \( 3! \): \[ 3! = 3 \times 2 \times 1 = 6 \] ### Step 7: Substitute \( 3! \) back into the equation Now substitute \( 3! \) back into the equation: \[ C(8, 5) = \frac{8 \times 7 \times 6}{6} \] ### Step 8: Simplify the expression Now, we can simplify: \[ C(8, 5) = 8 \times 7 = 56 \] ### Final Answer Thus, the value of \( C(8, 5) \) is: \[ \boxed{56} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: f. (5)/(8) div (3)/(64)

Evaluate : (v) (-8)/(9)+(-5)/(12)

Evaluate the sum: 5/(8)+3/(8)

Evaluate: (0.8 xx 0.8 xx 0.8 + 0.5 xx 0.5 xx 0.5)/(0.8 xx 0.8 - 0.8 xx 0.5 + 0.5 xx 0.5)

Evaluate : (iv) (3)/(8)+(-5)/(12)+(3)/(7)+(3)/(12)+(-5)/(8)+(-2)/(7)

Evaluate the 2.85 div 1.5

Evaluate : int_(0)^(8) |x-5|dx

If A={2,5} , B={3,4,7} and C={3,4,8} then evaluate AxxB , BxxA , AxxA

Evaluate {(1/3)^(-1) -(1/4)^(-1)}^-1 (ii) (5/8)^(-7) xx (8/5)^(-4)

Find the centroid of DeltaABC whose vertices are A (0,-1) , B (-2,5) and C (2,8) .