Home
Class 11
MATHS
Evaluate ""^(11)C(2)....

Evaluate
` ""^(11)C_(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( \binom{11}{2} \), we will use the formula for combinations, which is given by: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] In this case, \( n = 11 \) and \( r = 2 \). ### Step 1: Substitute the values into the formula We substitute \( n \) and \( r \) into the formula: \[ \binom{11}{2} = \frac{11!}{2!(11-2)!} \] ### Step 2: Simplify the expression Now, simplify \( 11 - 2 \): \[ \binom{11}{2} = \frac{11!}{2! \cdot 9!} \] ### Step 3: Expand the factorials Next, we expand \( 11! \): \[ 11! = 11 \times 10 \times 9! \] So, we can rewrite our expression: \[ \binom{11}{2} = \frac{11 \times 10 \times 9!}{2! \cdot 9!} \] ### Step 4: Cancel out the common terms The \( 9! \) in the numerator and denominator cancels out: \[ \binom{11}{2} = \frac{11 \times 10}{2!} \] ### Step 5: Calculate \( 2! \) Now, calculate \( 2! \): \[ 2! = 2 \times 1 = 2 \] ### Step 6: Substitute and simplify Substituting \( 2! \) back into the equation gives us: \[ \binom{11}{2} = \frac{11 \times 10}{2} \] ### Step 7: Perform the multiplication and division Now, calculate \( 11 \times 10 \): \[ 11 \times 10 = 110 \] Now divide by \( 2 \): \[ \frac{110}{2} = 55 \] ### Final Answer Thus, the value of \( \binom{11}{2} \) is: \[ \boxed{55} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : 2.34 xx 11

Evaluate: c. 4 (11)/(15) - 2 (7)/(20)

Evaluate : a. (-1)^(27) b. 0xx11^(6) c. 2^(4)xx3^(3)

Evaluate: b. 11 xx (9)/(11)

Evaluate: c. 28 div 1 (3)/(11)

Solve the equation ""^(11)C_(1) x^(10) - ""^(11)C_(3) x^(8) + ""^(11)C_(5) x^(6) - ""^(11)C_(7) x^(4) + ""^(11)C_(9) x^(2) - ""^(11)C_(11) = 0

Evaluate: (4)/(11)+(8)/(11)

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that C_(0)^(2) - C_(1)^(2) + C_(2)^(2) -…+ (-1)^(n) *C_(n)^(2)= 0 or (-1)^(n//2) * (n!)/((n//2)! (n//2)!) , according as n is odd or even Also , evaluate C_(0)^(2) - C_(1)^(2) + C_(2)^(2) - ...+ (-1)^(n) *C_(n)^(2) for n = 10 and n= 11 .