Home
Class 11
MATHS
Evaluate C(19,17)+ C(19,18)...

Evaluate
` C(19,17)+ C(19,18)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate \( C(19, 17) + C(19, 18) \), we can use a property of combinations. The property states that: \[ C(n, r) + C(n, r+1) = C(n+1, r+1) \] In our case, we have \( n = 19 \) and \( r = 17 \). Therefore, we can rewrite the expression as follows: \[ C(19, 17) + C(19, 18) = C(20, 18) \] Now, we need to calculate \( C(20, 18) \). The formula for combinations is given by: \[ C(n, r) = \frac{n!}{r!(n-r)!} \] Substituting \( n = 20 \) and \( r = 18 \): \[ C(20, 18) = \frac{20!}{18!(20-18)!} = \frac{20!}{18! \cdot 2!} \] Next, we can simplify this expression. The factorial \( 20! \) can be expressed as: \[ 20! = 20 \times 19 \times 18! \] Thus, we can substitute this back into our equation: \[ C(20, 18) = \frac{20 \times 19 \times 18!}{18! \cdot 2!} \] Now, we can cancel \( 18! \) from the numerator and the denominator: \[ C(20, 18) = \frac{20 \times 19}{2!} \] Calculating \( 2! \): \[ 2! = 2 \times 1 = 2 \] So we have: \[ C(20, 18) = \frac{20 \times 19}{2} = \frac{380}{2} = 190 \] Thus, the final answer is: \[ C(19, 17) + C(19, 18) = 190 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate i ^19

Evaluate : 19-|-13|

Evaluate : (-1)-(-19)

Evaluate the 27.85 - 19.61

Evaluate .^19C_18+^19C_17

Evaluate |{:(13,16,19),(14,17,20),(15,18,21):}| .

Evaluate the sum: 12/(19)+11/(19)

Evaluate: (19-6)-[17-(34-28)-17]

Evaluate the following: i^(19)

Find the values of the following determinants |{:(13,15,17),(14,16,18),(15,17,19):}|