Home
Class 11
MATHS
If C (2n,3) : C ( n,2)=12 : 1 find n,...

If ` C (2n,3) : C ( n,2)=12 : 1 ` find n,

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{C(2n, 3)}{C(n, 2)} = \frac{12}{1} \), we will follow these steps: ### Step 1: Write the combinations in terms of factorials The combination formula is given by: \[ C(n, r) = \frac{n!}{r!(n-r)!} \] Thus, we can express \( C(2n, 3) \) and \( C(n, 2) \) as follows: \[ C(2n, 3) = \frac{(2n)!}{3!(2n-3)!} \] \[ C(n, 2) = \frac{n!}{2!(n-2)!} \] ### Step 2: Set up the equation Substituting these into the equation gives: \[ \frac{(2n)!}{3!(2n-3)!} \div \frac{n!}{2!(n-2)!} = 12 \] This can be rewritten as: \[ \frac{(2n)! \cdot 2!(n-2)!}{3!(2n-3)! \cdot n!} = 12 \] ### Step 3: Simplify the equation Now, we can simplify the left-hand side: \[ \frac{(2n)! \cdot 2(n-2)!}{6(2n-3)! \cdot n!} = 12 \] This simplifies to: \[ \frac{(2n)(2n-1)(2n-2)(2n-3)! \cdot 2(n-2)!}{6(2n-3)! \cdot n!} = 12 \] Canceling \( (2n-3)! \) from both sides gives: \[ \frac{(2n)(2n-1)(2n-2) \cdot 2(n-2)!}{6 \cdot n!} = 12 \] ### Step 4: Further simplification Now, we can cancel \( 2 \) from the numerator and the denominator: \[ \frac{(2n)(2n-1)(2n-2)(n-2)!}{3 \cdot n!} = 12 \] ### Step 5: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ (2n)(2n-1)(2n-2)(n-2)! = 36 \cdot n! \] ### Step 6: Substitute \( n! \) We know that \( n! = n(n-1)(n-2)! \), so we can substitute this into the equation: \[ (2n)(2n-1)(2n-2)(n-2)! = 36 \cdot n(n-1)(n-2)! \] Cancelling \( (n-2)! \) from both sides gives: \[ (2n)(2n-1)(2n-2) = 36n(n-1) \] ### Step 7: Expand and simplify Expanding both sides: \[ 8n^3 - 12n^2 + 4n = 36n^2 - 36n \] Rearranging gives: \[ 8n^3 - 48n^2 + 40n = 0 \] ### Step 8: Factor out common terms Factoring out \( 8n \): \[ 8n(n^2 - 6n + 5) = 0 \] This gives us: \[ n = 0 \quad \text{or} \quad n^2 - 6n + 5 = 0 \] ### Step 9: Solve the quadratic equation Factoring the quadratic: \[ (n-1)(n-5) = 0 \] Thus, \( n = 1 \) or \( n = 5 \). ### Step 10: Conclusion Since \( n \) must be a positive integer, we have: \[ n = 5 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

if C(2n,3):C(n,2)=44:3 find n

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

If C(n,4) = C(n,6). Find C(12,n)

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) .^(2n) C_2: "^n C_2=12 :1 (ii) .^(2n) C_3: "^n C_3=11 :1

Determine n if (i) ^2n C_2:^n C_2=12 :1 (ii) ^2n C_3:^n C_3=11 :1

Determine n if (i) ""^(2n)C_(3) : ""^(n)C_(3) = 12:1 (ii) ""^(2n)C_(3): ""^(n)C_(3)= 11:1

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

If \ ^n C_(12)=\ \ ^n C_5,\ find the value of n