Home
Class 11
MATHS
If ""^(n)Cr : ""^(n)C(r+1) =1 : 2 and...

If ` ""^(n)C_r : ""^(n)C_(r+1) =1 : 2 and^(n)C_(r+1): ""^(n)C_(r+2) = 2 : 3 ` determine the values of n and r.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the values of \( n \) and \( r \) given the ratios of combinations. We have the following equations based on the problem statement: 1. \( \frac{{^nC_r}}{{^nC_{r+1}}} = \frac{1}{2} \) 2. \( \frac{{^nC_{r+1}}}{{^nC_{r+2}}} = \frac{2}{3} \) ### Step 1: Write the combination formulas Using the combination formula \( ^nC_r = \frac{n!}{r!(n-r)!} \), we can express the ratios: 1. From the first equation: \[ \frac{{^nC_r}}{{^nC_{r+1}}} = \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}} = \frac{(r+1)!(n-r-1)!}{r!(n-r)!} = \frac{(n-r)}{(r+1)} = \frac{1}{2} \] 2. From the second equation: \[ \frac{{^nC_{r+1}}}{{^nC_{r+2}}} = \frac{\frac{n!}{(r+1)!(n-r-1)!}}{\frac{n!}{(r+2)!(n-r-2)!}} = \frac{(r+2)!(n-r-2)!}{(r+1)!(n-r-1)!} = \frac{(r+2)}{(n-r-1)} = \frac{2}{3} \] ### Step 2: Set up the equations From the first equation: \[ 2(n - r) = r + 1 \quad \text{(Cross-multiplying)} \] This simplifies to: \[ 2n - 2r = r + 1 \implies 2n = 3r + 1 \quad \text{(Equation 1)} \] From the second equation: \[ 3(r + 2) = 2(n - r - 1) \quad \text{(Cross-multiplying)} \] This simplifies to: \[ 3r + 6 = 2n - 2r - 2 \implies 5r - 2n = -8 \quad \text{(Equation 2)} \] ### Step 3: Solve the equations Now we have two equations: 1. \( 2n = 3r + 1 \) 2. \( 5r - 2n = -8 \) Substituting \( 2n \) from Equation 1 into Equation 2: \[ 5r - (3r + 1) = -8 \] This simplifies to: \[ 5r - 3r - 1 = -8 \implies 2r - 1 = -8 \implies 2r = -7 \implies r = 12 \] Now substitute \( r = 12 \) back into Equation 1 to find \( n \): \[ 2n = 3(12) + 1 = 36 + 1 = 37 \implies n = \frac{37}{2} = 34 \] ### Final Answer Thus, the values are: \[ n = 34, \quad r = 12 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

If ""^(n)C_(r -1) = 36, ""^(n)C_(r) = 84 " and " ""^(n)C_(r +1) = 126 , then find the value of ""^(r)C_(2) .

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

If .^(n+1)C_(r+1.): ^nC_r: ^(n-1)C_(r-1)=11:6:3 find the values of n and r.

If ""^n C_(r-1) = 36, ""^(n) C_(r) = 84 and ""^(n) C_(r+1) = 126 then find the value of r.

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to