Home
Class 11
MATHS
If C (n,10) =C(n,12) , dertermine C(n,...

If ` C (n,10) =C(n,12) , ` dertermine C(n,5)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( C(n, 10) = C(n, 12) \) and we need to determine \( C(n, 5) \), we will follow these steps: ### Step 1: Set up the equation We know that \( C(n, k) = \frac{n!}{k!(n-k)!} \). Therefore, we can write: \[ C(n, 10) = \frac{n!}{10!(n-10)!} \] \[ C(n, 12) = \frac{n!}{12!(n-12)!} \] Given that \( C(n, 10) = C(n, 12) \), we can set these two expressions equal to each other: \[ \frac{n!}{10!(n-10)!} = \frac{n!}{12!(n-12)!} \] ### Step 2: Cancel \( n! \) Since \( n! \) appears on both sides, we can cancel it (assuming \( n! \neq 0 \)): \[ \frac{1}{10!(n-10)!} = \frac{1}{12!(n-12)!} \] ### Step 3: Cross-multiply Cross-multiplying gives us: \[ 12!(n-12)! = 10!(n-10)! \] ### Step 4: Rewrite factorials We can rewrite \( 12! \) and \( 10! \) in terms of each other: \[ 12! = 12 \times 11 \times 10! \] So, substituting this into the equation gives: \[ 12 \times 11 \times 10!(n-12)! = 10!(n-10)! \] ### Step 5: Cancel \( 10! \) Now we can cancel \( 10! \) from both sides: \[ 12 \times 11 \times (n-12)! = (n-10)! \] ### Step 6: Rewrite \( (n-10)! \) We can express \( (n-10)! \) in terms of \( (n-12)! \): \[ (n-10)! = (n-10)(n-11)(n-12)! \] Substituting this into the equation gives: \[ 12 \times 11 \times (n-12)! = (n-10)(n-11)(n-12)! \] ### Step 7: Cancel \( (n-12)! \) Assuming \( (n-12)! \neq 0 \), we can cancel it: \[ 12 \times 11 = (n-10)(n-11) \] ### Step 8: Expand and rearrange Expanding the right side: \[ 12 \times 11 = n^2 - 21n + 110 \] Setting the equation: \[ n^2 - 21n + 110 - 132 = 0 \] This simplifies to: \[ n^2 - 21n - 22 = 0 \] ### Step 9: Solve the quadratic equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ n = \frac{21 \pm \sqrt{(-21)^2 - 4 \cdot 1 \cdot (-22)}}{2 \cdot 1} \] \[ n = \frac{21 \pm \sqrt{441 + 88}}{2} \] \[ n = \frac{21 \pm \sqrt{529}}{2} \] \[ n = \frac{21 \pm 23}{2} \] This gives us two possible values for \( n \): \[ n = 22 \quad \text{or} \quad n = -1 \] Since \( n \) must be a positive integer, we take \( n = 22 \). ### Step 10: Calculate \( C(n, 5) \) Now we need to find \( C(22, 5) \): \[ C(22, 5) = \frac{22!}{5!(22-5)!} = \frac{22!}{5! \cdot 17!} \] Calculating this gives: \[ C(22, 5) = \frac{22 \times 21 \times 20 \times 19 \times 18}{5 \times 4 \times 3 \times 2 \times 1} = 26334 \] ### Final Answer Thus, the value of \( C(n, 5) \) is: \[ \boxed{26334} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If C(n,12) = C(n,16) , then C(30,n) = ?

C(10,2) = C(n,2).Find n.

If C(n , 12)=C(n ,8),\ t h e n\ C(22 , n) is equal to a. 132 b. 210 c. 252 d. 303

If C (2n,3) : C ( n,2)=12 : 1 find n,

If C(n,4) = C(n,6). Find C(12,n)

If \ ^n C_(10)=\ \ ^n C_(12) f i n d ^(23)C_n

If .^(n)C_(10) = .^(n)C_(15) , then evaluate .^(27)C_(n) .

If .^(n)C_(5) = .^(n)C_(7) , then find .^(n)P_(3)

If ""^(n)C_(10)=""^(n)C_(13) , then find the value of ""^(n)C_(2)

If .^(20)C_(n+1) = ^ (n) C_(16) , then the value of n is a.7 b. 10 c. 13 d. None of these