Home
Class 11
MATHS
If C ( 2n,r) = C(2n,r+2) , find r in ter...

If C ( 2n,r) = C(2n,r+2) , find r in term of n.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( C(2n, r) = C(2n, r + 2) \), we will follow these steps: ### Step 1: Write the Combinations in Factorial Form We start by expressing the combinations in terms of factorials: \[ C(2n, r) = \frac{(2n)!}{r!(2n - r)!} \] \[ C(2n, r + 2) = \frac{(2n)!}{(r + 2)!(2n - (r + 2))!} \] ### Step 2: Set the Two Expressions Equal Since \( C(2n, r) = C(2n, r + 2) \), we can set the two expressions equal: \[ \frac{(2n)!}{r!(2n - r)!} = \frac{(2n)!}{(r + 2)!(2n - r - 2)!} \] ### Step 3: Cancel Out the Factorials We can cancel \( (2n)! \) from both sides: \[ \frac{1}{r!(2n - r)!} = \frac{1}{(r + 2)!(2n - r - 2)!} \] ### Step 4: Cross Multiply Cross multiplying gives us: \[ (2n - r - 2)! \cdot 1 = (r + 2)(r + 1) \cdot (2n - r)! \] ### Step 5: Rewrite the Factorials We can rewrite \( (r + 2)! \) as \( (r + 2)(r + 1)(r!) \) and \( (2n - r)! \) as \( (2n - r)(2n - r - 1)(2n - r - 2)! \): \[ (2n - r - 2)! = (r + 2)(r + 1)(2n - r)(2n - r - 1)(2n - r - 2)! \] ### Step 6: Cancel the Common Factorials Cancelling \( (2n - r - 2)! \) from both sides, we have: \[ 1 = (r + 2)(r + 1)(2n - r)(2n - r - 1) \] ### Step 7: Expand and Rearrange Expanding the left side: \[ (r + 2)(r + 1) = r^2 + 3r + 2 \] And the right side: \[ (2n - r)(2n - r - 1) = 4n^2 - 4nr + r^2 + r \] ### Step 8: Set the Equation Setting the two sides equal gives: \[ r^2 + 3r + 2 = 4n^2 - 4nr + r^2 + r \] ### Step 9: Simplify Cancelling \( r^2 \) from both sides: \[ 3r + 2 = 4n^2 - 4nr + r \] Rearranging gives: \[ 2r + 4nr = 4n^2 - 2 \] ### Step 10: Factor Out r Factoring out \( r \): \[ r(2 + 4n) = 4n^2 - 2 \] ### Step 11: Solve for r Finally, we solve for \( r \): \[ r = \frac{4n^2 - 2}{2 + 4n} \] ### Step 12: Simplify Further This can be simplified to: \[ r = \frac{2(2n^2 - 1)}{2(1 + 2n)} = \frac{2n^2 - 1}{1 + 2n} \] Thus, the final answer is: \[ r = n - 1 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

If the sum of first n terms of an A.P. is 3n^2 + 2n , find its r^(th) term.

If ""^(n)C_r : ""^(n)C_(r+1) =1 : 2 and^(n)C_(r+1): ""^(n)C_(r+2) = 2 : 3 determine the values of n and r.

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

If ""^(n)C_(r -1) = 36, ""^(n)C_(r) = 84 " and " ""^(n)C_(r +1) = 126 , then find the value of ""^(r)C_(2) .

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Prove that the greatest value of .^(2n)C_(r)(0 le r le 2n) is .^(2n)C_(n) (for 1 le r le n) .

If .^(n)C_(r-1)=36, .^(n)C_(r)=84 and .^(n)C_(r+1)=126 , find n and r.

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.