Home
Class 11
MATHS
The value of ""^(50)C4 + underset(r=1)...

The value of ` ""^(50)C_4 + underset(r=1) overset(6)sum ""^(56-r)C_3 ` is

A

` ""^(55)C_4`

B

` ""^(55)C_3`

C

` ""^(56)C_3`

D

` ""^(56)C_4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( {}^{50}C_4 + \sum_{r=1}^{6} {}^{56-r}C_3 \), we will follow these steps: ### Step 1: Understand the Summation The summation \( \sum_{r=1}^{6} {}^{56-r}C_3 \) can be expanded as follows: - When \( r = 1 \), it gives \( {}^{55}C_3 \) - When \( r = 2 \), it gives \( {}^{54}C_3 \) - When \( r = 3 \), it gives \( {}^{53}C_3 \) - When \( r = 4 \), it gives \( {}^{52}C_3 \) - When \( r = 5 \), it gives \( {}^{51}C_3 \) - When \( r = 6 \), it gives \( {}^{50}C_3 \) Thus, the summation can be rewritten as: \[ {}^{55}C_3 + {}^{54}C_3 + {}^{53}C_3 + {}^{52}C_3 + {}^{51}C_3 + {}^{50}C_3 \] ### Step 2: Combine the Terms Now, we can combine the original term with the summation: \[ {}^{50}C_4 + {}^{55}C_3 + {}^{54}C_3 + {}^{53}C_3 + {}^{52}C_3 + {}^{51}C_3 + {}^{50}C_3 \] ### Step 3: Apply the Hockey Stick Identity We can use the Hockey Stick Identity in combinatorics, which states: \[ {}^{n}C_{r} + {}^{n+1}C_{r} + {}^{n+2}C_{r} + \ldots + {}^{m}C_{r} = {}^{m+1}C_{r+1} \] In our case, we can apply it to the terms from \( {}^{50}C_3 \) to \( {}^{55}C_3 \): \[ {}^{51}C_3 + {}^{52}C_3 + {}^{53}C_3 + {}^{54}C_3 + {}^{55}C_3 = {}^{56}C_4 \] ### Step 4: Substitute Back Now, we can substitute this back into our equation: \[ {}^{50}C_4 + {}^{56}C_4 \] ### Step 5: Combine the Terms Now we can combine the two terms: \[ {}^{50}C_4 + {}^{56}C_4 = {}^{57}C_4 \] ### Final Answer Thus, the value of the expression \( {}^{50}C_4 + \sum_{r=1}^{6} {}^{56-r}C_3 \) is: \[ {}^{57}C_4 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of ""^(47)C_4+ underset (r=1) overset( 5) sum ""^(52-r)C_3

If .^(47)C_(4)+underset(r=1)overset(5)(sum).^(52-r)C_(3) is equal to

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

The value of underset(r=0)overset(40)sumr.^(40)C_(r).^(30)C_(r) is

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) = ?

The value of ""^(50)C_(4)+sum_(r=1)^(6)""^(56-r)C_(3) , is

The sum of the series underset(r = 0)overset(10)Sigma .^(20)C_(r) " is " 2^(19) + (.^(20)C_(10))/(2)

Find the value of underset(r = 1)overset(10)sum underset(s = 1)overset(10)sum tan^(-1) ((r)/(s))

Let n be a positive integer and (1+x)^(n)+C_(0)+C_(1)x+C_(2)x^(2)+C_(3)x^(3)+ . . .+C_(r)x^(r)+ . . .+C_(n-1)x^(n-1)+C_(n)x^(n) Where C_(r) stands for .^(n)C_(r) , then Q. The value of underset(r=0)overset(n)(sum)underset(s=0)overset(n)(sum),C_(r),C_(S) is