Home
Class 11
MATHS
""^(n-1)C3+""^(n-1)C4 gt ""^(n)C3 if...

` ""^(n-1)C_3+""^(n-1)C_4 gt ""^(n)C_3 ` if

A

` n gt 7 `

B

` n ge 7`

C

` n gt 6`

D

` n ge 6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( \binom{n-1}{3} + \binom{n-1}{4} > \binom{n}{3} \), we will follow these steps: ### Step 1: Use the Pascal's Identity We start with the identity that states: \[ \binom{n-1}{r} + \binom{n-1}{r+1} = \binom{n}{r+1} \] In our case, we can set \( r = 3 \): \[ \binom{n-1}{3} + \binom{n-1}{4} = \binom{n}{4} \] ### Step 2: Rewrite the Inequality Now, substituting this into our inequality, we have: \[ \binom{n}{4} > \binom{n}{3} \] ### Step 3: Express the Binomial Coefficients Using the definition of binomial coefficients, we can express them as: \[ \binom{n}{4} = \frac{n!}{4!(n-4)!} \] \[ \binom{n}{3} = \frac{n!}{3!(n-3)!} \] ### Step 4: Set Up the Inequality Substituting these into the inequality gives us: \[ \frac{n!}{4!(n-4)!} > \frac{n!}{3!(n-3)!} \] ### Step 5: Cancel \( n! \) Since \( n! \) is common on both sides, we can cancel it (assuming \( n \geq 4 \)): \[ \frac{1}{4!(n-4)!} > \frac{1}{3!(n-3)!} \] ### Step 6: Cross-Multiply Cross-multiplying gives us: \[ 3!(n-3)! > 4!(n-4)! \] ### Step 7: Simplify the Factorials We know that \( 4! = 4 \times 3! \), so we can simplify: \[ 3!(n-3)! > 4 \times 3!(n-4)! \] Dividing both sides by \( 3! \) (assuming \( n \geq 4 \)): \[ (n-3)! > 4(n-4)! \] ### Step 8: Further Simplification Now, we can express \( (n-3)! \) as \( (n-3)(n-4)! \): \[ (n-3)(n-4)! > 4(n-4)! \] Dividing both sides by \( (n-4)! \) (assuming \( n > 4 \)): \[ n-3 > 4 \] ### Step 9: Solve for \( n \) Finally, solving the inequality gives us: \[ n > 7 \] ### Conclusion Thus, the condition for the original inequality \( \binom{n-1}{3} + \binom{n-1}{4} > \binom{n}{3} \) is: \[ n > 7 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(3) + ""^(n)C_4 gt ""^(n+1) C_3 , then.

If ""^(n-1)C_(3)+""^(n-1)C_(4)gt""^nC_(3) , then

((1 + ""^nC_1 + ""^nC_2 + ""^nC_3+…….+nC_n)^2)/(1 + ""^(2n)C_1 + ""^(2n)C_2 + ""^(2n)C_3 + ……… + ""^(2n)C_(2n)) =

If n is even and ""^(n)C_(0)lt""^(n)C_(1) lt ""^(n)C_(2) lt ....lt ""^(n)C_(r) gt ""^(n)C_(r+1) gt""^(n)C_(r+2) gt......gt""^(n)C_(n) , then, r=

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is

The inequality .^(n+1)C_(6)-.^(n)C_(4) gt .^(n)C_(5) holds true for all n greater than ________.

Determine n if (i) ""^(2n)C_(3) : ""^(n)C_(3) = 12:1 (ii) ""^(2n)C_(3): ""^(n)C_(3)= 11:1

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

Prove that .^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r ) .