Home
Class 11
MATHS
If ""^(n)C(10) = ""^(n) C (14), find th...

If `""^(n)C_(10) = ""^(n) C _ (14),` find the value of ` ""^(n) C_(20) and ""^(25)C_n`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( n \) given that \( \binom{n}{10} = \binom{n}{14} \), and then use this value to find \( \binom{n}{20} \) and \( \binom{25}{n} \). ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We start with the equation: \[ \binom{n}{10} = \binom{n}{14} \] This means that the number of ways to choose 10 items from \( n \) is equal to the number of ways to choose 14 items from \( n \). 2. **Using the Combination Formula**: Recall the formula for combinations: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] Applying this to our equation: \[ \frac{n!}{10!(n-10)!} = \frac{n!}{14!(n-14)!} \] 3. **Canceling \( n! \)**: Since \( n! \) is common on both sides, we can cancel it: \[ \frac{1}{10!(n-10)!} = \frac{1}{14!(n-14)!} \] 4. **Cross-Multiplying**: Cross-multiplying gives us: \[ 14!(n-14)! = 10!(n-10)! \] 5. **Expanding Factorials**: We can expand \( 14! \) and \( 10! \): \[ 14 \times 13 \times 12 \times 11 \times 10! \times (n-14)! = 10! \times (n-10)(n-11)(n-12)(n-13)(n-14)! \] Canceling \( 10! \) and \( (n-14)! \) from both sides gives: \[ 14 \times 13 \times 12 \times 11 = (n-10)(n-11)(n-12)(n-13) \] 6. **Finding \( n \)**: We can set \( n - 10 = x \), so: \[ 14 \times 13 \times 12 \times 11 = x(x-1)(x-2)(x-3) \] We know \( 14 \times 13 \times 12 \times 11 = 24024 \). We need to find \( x \) such that: \[ x(x-1)(x-2)(x-3) = 24024 \] Testing \( x = 14 \): \[ 14 \times 13 \times 12 \times 11 = 24024 \] Thus, \( x = 14 \) implies \( n - 10 = 14 \) or \( n = 24 \). 7. **Calculating \( \binom{n}{20} \)**: Now we calculate \( \binom{24}{20} \): \[ \binom{24}{20} = \binom{24}{4} = \frac{24!}{4!(24-4)!} = \frac{24 \times 23 \times 22 \times 21}{4 \times 3 \times 2 \times 1} \] Calculating this gives: \[ = \frac{24 \times 23 \times 22 \times 21}{24} = 23 \times 22 \times 21 = 10626 \] 8. **Calculating \( \binom{25}{n} \)**: Now we calculate \( \binom{25}{24} \): \[ \binom{25}{24} = 25 \] ### Final Answers: - \( \binom{24}{20} = 10626 \) - \( \binom{25}{n} = 25 \)
Promotional Banner

Similar Questions

Explore conceptually related problems

If ""^(n)C_(10)=""^(n)C_(13) , then find the value of ""^(n)C_(2)

If .^(n)C_(12) = .^(n)C_(16) , find the value of n

If .^(2n)C_(3):^(n)C_(3)=11:1 , find the value of n.

If ""^(n)C_4= ""^(n)C_6, find n.

If \ ^n C_(12)=\ \ ^n C_5,\ find the value of n

If .^(n)C_(10) = .^(n)C_(15) , then evaluate .^(27)C_(n) .

If .^(35)C_(n+7)=.^(35)C_(4n-2) then find the value of n.

If .^(n)C_(8) = .^(n)C_(2) , find .^(n)C_(2) .

If ""^(n)C_(r -1) = 36, ""^(n)C_(r) = 84 " and " ""^(n)C_(r +1) = 126 , then find the value of ""^(r)C_(2) .

If .^(n)C_(9)=.^(n)C_(7) , find n.